【传送门:51nod-1310


简要题意:

  有一个数组S,保证里面的数是从小到大的,而且每一个数的二进制中都没有连续的1,如:1,2,4,5,8...

  给出n,然后给出n个位置,求出S数组中n个位置的异或和


题解:

  数位DP好题,卡了老久

  设f[i]表示2i-1到2i-1中有多少个数是在数组S中的

  转移很容易想到$f[i]=1+\sum_{j=1}^{i-2}f[j]$

  而也可以得到$f[i-1]=1+\sum_{j=1}^{i-3}f[j]$

  上下两式合并得到$f[i]=f[i-1]+f[i-2]$

  就是斐波那契数列,f[1]=f[2]=1

  设s[i]为1到2i-1中有多少个数是在数组S中的,显然$s[i]=\sum_{j=1}^{i}f[j]$

  然后就可以做了,对于一个位置x,二分找到最大的小于x的s[m],将x-s[m]-1后再进行递归二分,复杂度为O((logn)2)

  只要在途中维护异或就行了,设P[i]为答案二进制中第i位的数,对于找到的m,将P[m]^=1就好了

  最后转换成二进制就行了,注意可能在算2的次方的时候会爆long long,所以要用快速幂


参考代码:

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
typedef long long LL;
int P[],tot;
LL a[],Mod=1e9+;
LL f[],s[];
void pre()
{
tot=;
f[]=;f[]=;
s[]=;s[]=;
for(tot=;;tot++)
{
f[tot]=f[tot-]+f[tot-];
s[tot]=f[tot]+s[tot-];
if(s[tot]>1e18) break;
}
}
void getp(LL x)
{
if(x==) return ;
int l=,r=tot,m;
while(l<=r)
{
int mid=(l+r)/;
if(x>s[mid]) m=mid,l=mid+;
else r=mid-;
}
P[m]^=;
getp(x-s[m]-);
}
LL p_mod(LL a,LL b)
{
LL ans=;
while(b!=)
{
if(b%==) ans=ans*a%Mod;
a=a*a%Mod;b/=;
}
return ans;
}
int main()
{
pre();
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%lld",&a[i]);
getp(a[i]);
}
LL ans=;
for(int i=;i<=tot;i++) ans=(ans+LL(P[i])*p_mod(,i))%Mod;
printf("%lld\n",ans);
return ;
}

51nod-1310: Chandrima and XOR的更多相关文章

  1. [51nod1310]Chandrima and XOR

    有这样一个小到大排列的无穷序列S:1, 2, 4, 5, 8......,其中任何一个数转为2进制不包括2个连续的1.给出一个长度为N的正整数数组A,A1, A2......An记录的是下标(下标从1 ...

  2. 51nod 1295 XOR key | 可持久化Trie树

    51nod 1295 XOR key 这也是很久以前就想做的一道板子题了--学了一点可持久化之后我终于会做这道题了! 给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X ...

  3. 51Nod XOR key —— 区间最大异或值 可持久化字典树

    题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1295 1295 XOR key  题目来源: HackerRa ...

  4. [多校联考2019(Round 4 T1)][51nod 1295]Xor key(可持久化trie)

    [51nod 1295]Xor key(可持久化trie) 题面 给出一个长度为n的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] 至 A[R] ...

  5. 51nod 1295 XOR key 可持久化01字典树

    题意 给出一个长度为\(n\)的正整数数组\(a\),再给出\(q\)个询问,每次询问给出3个数,\(L,R,X(L<=R)\).求\(a[L]\)至\(a[R]\)这\(R-L+1\)个数中, ...

  6. 51nod 1295 XOR key (可持久化Trie树)

    1295 XOR key  题目来源: HackerRank 基准时间限制:1.5 秒 空间限制:262144 KB 分值: 160 难度:6级算法题   给出一个长度为N的正整数数组A,再给出Q个查 ...

  7. 51nod 1295 XOR key-区间异或最大值-可持久化01Trie树(模板)

    1295 XOR key 2 秒 262,144 KB 160 分 6 级题   给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求A[L] ...

  8. 51Nod - 1295:XOR key (可持久化Trie求区间最大异或)

    给出一个长度为N的正整数数组A,再给出Q个查询,每个查询包括3个数,L, R, X (L <= R).求ALL 至 ARR 这R - L + 1个数中,与X 进行异或运算(Xor),得到的最大值 ...

  9. 51nod 1622 集合对[算法马拉松19 C]

    题目链接:https://www.51nod.com/contest/problem.html#!problemId=1622 第一次参加算法马拉松,我就是去看大神们疯狂秒题,然后感受绝望的orz.. ...

随机推荐

  1. 2015 Multi-University Training Contest 1 hdu 5296 Annoying problem

    Annoying problem Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  2. ZOJ 2705

    这题,找找规律,可以发现一个斐波那契数列.按照斐波那契数列求和,知道, SUM=Fn+2-F1,于是,该长度为Fn+2的倍数.因为斐波那契数列不一定是从1开始的,而从2开始的每个数都是从1开始的倍数. ...

  3. Unsupported major.minor version 51.0问题的解决

    在java编程的过程中,当用myeclipse软件打开别人写的代码时,遇到Unsupported major.minor version 51.0此类问题,实在是令人痛苦不堪.弄了整整一晚才搞清楚,我 ...

  4. hdu1525 Euclid&#39;s Game , 基础博弈

    http://acm.hdu.edu.cn/showproblem.php?pid=1525 题意: 两人博弈,给出两个数a和b, 较大数减去较小数的随意倍数.结果不能小于0,将两个数随意一个数减到0 ...

  5. hashmap 循环取出全部值 取出特定的值 两种方法

    //第一种 Iterator menus = menu.iterator(); while(menus.hasNext()) { Map userMap = (Map) menus.next(); S ...

  6. .net中的目录

    System.Environment.CurrentDirectory Application.StartupPath https://msdn.microsoft.com/en-us/library ...

  7. MyBatis数据持久化(七)多表连接查询

    本节继续以多表连接查询的案例介绍使用resultMap的好处,对于两张以上的表进行关联查询,当我们有选择的从不同表查询所需字段时,使用resultMap是相当方便的.例如我们有两张表,分别为用户表Us ...

  8. HDU 1285 确定比赛名次【拓扑排序】

    题意:中文的题目-----这道题让我终于明白了那个break的作用---因为题目中有这一句“符合条件的排名可能不是唯一的,此时要求输出时编号小的队伍在前”@_@ #include<iostrea ...

  9. 快速傅里叶变换(Fast-Fourier Transform,FFT)

    数学定义: (详细参考:https://www.baidu.com/link?url=oYAuG2o-pia_U3DlF5n_MJZyE5YKfaVRUHTTDbM1FwM_kDTjGCxKpw_Pb ...

  10. iOS面试总结(待完善)

    闲的没事总结一下面试资料,先列个大纲,然后慢慢填充,一步步完善,反正也不急. 1.基本属性 2.KVC与KVO 3.代理与block 4.多线程:NSThread,GCD,NSOperation 5. ...