代码如下:

from __future__ import division, print_function, absolute_import

import tensorflow as tf
import tflearn
from tflearn.layers.core import input_data, dropout, fully_connected
from tflearn.layers.conv import conv_1d, global_max_pool
from tflearn.layers.merge_ops import merge
from tflearn.layers.estimator import regression
from tflearn.data_utils import to_categorical, pad_sequences
from tflearn.datasets import imdb
import os
from tensorflow.contrib.learn.python import learn
from sklearn import metrics
from sklearn.model_selection import train_test_split
import numpy as np MAX_DOCUMENT_LENGTH = 200
EMBEDDING_SIZE = 50 n_words=0 def load_one_file(filename):
x=""
with open(filename) as f:
for line in f:
x+=line
return x def load_files(rootdir,label):
list = os.listdir(rootdir)
x=[]
y=[]
for i in range(0, len(list)):
path = os.path.join(rootdir, list[i])
if os.path.isfile(path):
#print "Load file %s" % path
y.append(label)
x.append(load_one_file(path)) return x,y def load_data():
x=[]
y=[]
x1,y1=load_files("../data/movie-review-data/review_polarity/txt_sentoken/pos/",0)
x2,y2=load_files("../data/movie-review-data/review_polarity/txt_sentoken/neg/", 1)
x=x1+x2
y=y1+y2
return x,y
def do_cnn(trainX, trainY,testX, testY):
global n_words
# Data preprocessing
# Sequence padding
trainX = pad_sequences(trainX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
testX = pad_sequences(testX, maxlen=MAX_DOCUMENT_LENGTH, value=0.)
# Converting labels to binary vectors
trainY = to_categorical(trainY, nb_classes=2)
testY = to_categorical(testY, nb_classes=2)
# Building convolutional network
network = input_data(shape=[None, MAX_DOCUMENT_LENGTH], name='input')
network = tflearn.embedding(network, input_dim=n_words+1, output_dim=128)
branch1 = conv_1d(network, 128, 3, padding='valid', activation='relu', regularizer="L2")
branch2 = conv_1d(network, 128, 4, padding='valid', activation='relu', regularizer="L2")
branch3 = conv_1d(network, 128, 5, padding='valid', activation='relu', regularizer="L2")
network = merge([branch1, branch2, branch3], mode='concat', axis=1)
network = tf.expand_dims(network, 2)
network = global_max_pool(network)
network = dropout(network, 0.5)
network = fully_connected(network, 2, activation='softmax')
network = regression(network, optimizer='adam', learning_rate=0.001,
loss='categorical_crossentropy', name='target')
# Training
model = tflearn.DNN(network, tensorboard_verbose=0)
model.fit(trainX, trainY, n_epoch = 20, shuffle=True, validation_set=(testX, testY), show_metric=True, batch_size=32) if __name__ == '__main__':
# IMDB Dataset loading
global n_words x,y=load_data() x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.4, random_state=0) vp = learn.preprocessing.VocabularyProcessor(max_document_length=MAX_DOCUMENT_LENGTH, min_frequency=1)
vp.fit(x)
x_train = np.array(list(vp.transform(x_train)))
x_test = np.array(list(vp.transform(x_test)))
n_words=len(vp.vocabulary_)
print('Total words: %d' % n_words) do_cnn(x_train, y_train,x_test, y_test)

准确率是100%

使用CNN做电影评论的负面检测——本质上感觉和ngram或者LSTM同,因为CNN里图像检测卷积一般是3x3,而文本分类的话是直接是一维的3、4、5的更多相关文章

  1. 使用LSTM做电影评论负面检测——使用朴素贝叶斯才51%,但是使用LSTM可以达到99%准确度

    基本思路: 每个评论取前200个单词.然后生成词汇表,利用词汇index标注评论(对 每条评论的前200个单词编号而已),然后使用LSTM做正负评论检测. 代码解读见[[[评论]]]!embeddin ...

  2. 『科学计算』图像检测微型demo

    这里是课上老师给出的一个示例程序,演示图像检测的过程,本来以为是传统的滑窗检测,但实际上引入了selectivesearch来选择候选窗,所以看思路应该是RCNN的范畴,蛮有意思的,由于老师的注释写的 ...

  3. 基于Keras的imdb数据集电影评论情感二分类

    IMDB数据集下载速度慢,可以在我的repo库中找到下载,下载后放到~/.keras/datasets/目录下,即可正常运行.)中找到下载,下载后放到~/.keras/datasets/目录下,即可正 ...

  4. 【项目实战】Kaggle电影评论情感分析

    前言 这几天持续摆烂了几天,原因是我自己对于Kaggle电影评论情感分析的这个赛题敲出来的代码无论如何没办法运行,其中数据变换的维度我无法把握好,所以总是在函数中传错数据.今天痛定思痛,重新写了一遍代 ...

  5. kaggle之电影评论文本情感分类

    电影文本情感分类 Github地址 Kaggle地址 这个任务主要是对电影评论文本进行情感分类,主要分为正面评论和负面评论,所以是一个二分类问题,二分类模型我们可以选取一些常见的模型比如贝叶斯.逻辑回 ...

  6. 基于卷积神经网络CNN的电影推荐系统

    本项目使用文本卷积神经网络,并使用MovieLens数据集完成电影推荐的任务. 推荐系统在日常的网络应用中无处不在,比如网上购物.网上买书.新闻app.社交网络.音乐网站.电影网站等等等等,有人的地方 ...

  7. tensorflow 教程 文本分类 IMDB电影评论

    昨天配置了tensorflow的gpu版本,今天开始简单的使用一下 主要是看了一下tensorflow的tutorial 里面的 IMDB 电影评论二分类这个教程 教程里面主要包括了一下几个内容:下载 ...

  8. CNN做序列标注问题(tensorflow)

    一.搭建简单的CNN做序列标注代码 import tensorflow as tf import numpy as np import matplotlib.pyplot as plt TIME_ST ...

  9. 爬虫系列(十一) 用requests和xpath爬取豆瓣电影评论

    这篇文章,我们继续利用 requests 和 xpath 爬取豆瓣电影的短评,下面还是先贴上效果图: 1.网页分析 (1)翻页 我们还是使用 Chrome 浏览器打开豆瓣电影中某一部电影的评论进行分析 ...

随机推荐

  1. Blender Python UV 学习

    Blender Python UV 学习 1. bmesh面转换 bm = bmesh.from_edit_mesh(bpy.context.edit_object.data) bm.faces.en ...

  2. Tomcat修改默认根目录

    tomcat7默认的程序发布路径为tomcat/webapps/ROOT/下面 修改Tomcat配置文件server.xml <Host name="localhost" a ...

  3. Oracle---显式游标

    一  游标的分类 在Oracle中提供了两种类型的游标:静态游标和动态游标. 1.静态游标是在编译时知道其SELECT语句的游标.静态游标又分为两种类型,即隐式游标和显式游标. 2.当用户需要为游标使 ...

  4. 原型模式(Prototype)C++实现

    意图:用原型实例指定创建对象的种类,并且通过拷贝这些原型创建新的对象. 实用性:1.当要实例化的类是在运行时刻指定时. 2.为了避免创建一个与产品类层次平行的工厂类层次时. 3.当一个类的实例只能有几 ...

  5. WCF与 Web Service的区别是什么?各自的优点在哪里呢?

    这是很多.NET开发人员容易搞错的问题.面试的时候也经常遇到,初学者也很难分快速弄明白 Web service: .net技术中其实就指ASP.NET Web Service,用的时间比较长,微软其实 ...

  6. bzoj4282 慎二的随机数列 树状数组求LIS + 构造

    首先,我们不难发现N个位置都选一定不会比少选任意几个差,所以我们就先设定我们将这N个修改机会都用上, 那么如果点 i">ii 前有sumv">sumvsumv个可修改点 ...

  7. Angular之constructor和ngOnInit差异及适用场景(转)

    原始地址:https://blog.csdn.net/u010730126/article/details/64486997 Angular中根据适用场景定义了很多生命周期函数,其本质上是事件的响应函 ...

  8. Guava 是个风火轮之基础工具 (1)

    转自:http://www.jamespan.me/blog/2015/02/08/guava-basic-utilities-1/ Guava 是个风火轮之基础工具 (1) 前言 Guava 是 J ...

  9. 训练1-V

    输入2个正整数A,B,求A与B的最大公约数. Input 2个数A,B,中间用空格隔开.(1<= A,B <= 10^9) Output 输出A与B的最大公约数. Sample Input ...

  10. SCOI2003 严格N元树

    SCOI2003 严格N元树 Description 如果一棵树的所有非叶节点都恰好有n个儿子,那么我们称它为严格n元树.如果该树中最底层的节点深度为d (根的深度为0),那么我们称它为一棵深度为d的 ...