链接:传送门

题意:这个游戏是一个2D打飞机游戏,飞机以速度 v 水平飞行,它是一个简单的多边形,玩家从( 0 , 0 )向上射击,子弹有一个出速度 b ,子弹可以看作一个点,打中飞机边缘是无法击落飞机的,只有子弹进入飞机内部才能击落飞机,子弹受重力的影响,给出重力加速度 g ,XXX想知道子弹在第几秒击中飞机,如果始终无法击中则输出 Miss!

  • 注意:

    1. v 有正有负,v > 0 飞机是从左向右,v < 0 飞机从右向左
    2. g 的范围是 [ 0 , 10 ],如果 g = 0,说明轨迹是一个直线

思路:如果同时考虑子弹的轨迹和飞机的轨迹是非常复杂的,所以让飞机“静止”,这样子弹就有了一个水平方向的速度分量 -v ,子弹的轨迹就变成了一条抛物线,所以只需要枚举判断抛物线上的点是否在“飞机”内就可以了。

balabala:这道题加了点物理知识还是很有趣的,但也是简单题,我用的是扫描法......


/*************************************************************************
> File Name: hdu4458.cpp
> Author: WArobot
> Blog: http://www.cnblogs.com/WArobot/
> Created Time: 2017年05月02日 星期二 02时54分27秒
************************************************************************/ #include<bits/stdc++.h>
using namespace std; #define eps 1.0e-10
#define dou double struct point{
dou x;
dou y;
}po[111]; int n,m;
dou dabs(dou x){
return x<0?-x:x;
}
int dcmp(dou x){
if(fabs(x)<eps) return 0;
return x<0?-1:1;
} bool online(point p1,point p,point p2){
if( p.x<=max(p1.x,p2.x) && p.x>=min(p1.x,p2.x) && p.y<=max(p1.y,p2.y) && p.y>=min(p1.y,p2.y) ){
if ( dabs( (p.x-p1.x)*(p2.y-p1.y) - (p.y-p1.y)*(p2.x-p1.x) )<=eps )
return true;
}
return false;
}
bool inside(point p){
int cnt = 0 ;
dou xinter; // 血的教训
point p1,p2;
p1 = po[0];
for(int i=1;i<=n;i++){
p2 = po[i%n];
if( online(p1,p,p2) ) return false;
if( p.x<=max(p1.x,p2.x) && p.y<=max(p1.y,p2.y) && p.y>min(p1.y,p2.y) ){
if(p1.y!=p2.y){
xinter = (p.y-p1.y)*(p1.x-p2.x)/(p1.y-p2.y) + p1.x; // 理论上的最远距离
if(p1.x==p2.x || p.x<=xinter) cnt++;
}
}
p1 = p2;
}
if(cnt%2==0) return false;
else return true;
} int main(){
// v是飞机飞行速度,b为子弹初始速度,g为重力加速度
int v,b,g;
point p;
while(~scanf("%d%d%d",&v,&b,&g)){
if(v==0 && b==0 && g==0) break; scanf("%d",&n);
double Top = 0.0;
for(int i=n-1;i>=0;i--){
scanf("%lf%lf",&po[i].x,&po[i].y);
Top = max(Top,po[i].y);
}
dou t_max = dcmp(g)? 2*b/g : Top/b;
// 枚举时间
// x = (-v)*t
// y = b*t-1/2*g*t^2
bool ok = 0;
for(dou t = 0.0 ; t <= t_max ; t += 0.001 ){
p.x = (-v)*t;
p.y = b*t - 0.5*g*t*t;
if( inside(p) ){
printf("%.2lf\n",t);
ok = 1;
break;
}
}
if(!ok) printf("Miss!\n");
}
return 0;
}

HDU 4458 Shoot the Airplane( 判断点在多边形内外 )的更多相关文章

  1. HDU 1756 Cupid's Arrow 判断点在多边形的内部

    Cupid's Arrow Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  2. ZOJ 1081 Points Within( 判断点在多边形内外 )

    链接:传送门 题意:给出n个点围成的一个多边形,现在有m个点p,询问p是否在多边形内,你可以认为这些点均不同且输入的顶点是多边形中相邻的两个顶点,最后的顶点与第一个相邻并且每一个顶点都连接两条边( 左 ...

  3. hdu 1756:Cupid's Arrow(计算几何,判断点在多边形内)

    Cupid's Arrow Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Tot ...

  4. HDU 1756 Cupid's Arrow( 判断点在多边形的内外 )

    链接:传送门 思路:判断每支箭是否在多边形内,计算几何点定位中水题,不清楚下面的代码能不能适用于给定点的顺序不确定( 既不是顺时针又不是逆时针 ) /************************* ...

  5. matlab练习程序(射线法判断点与多边形关系)

    依然是计算几何. 射线法判断点与多边形关系原理如下: 从待判断点引出一条射线,射线与多边形相交,如果交点为偶数,则点不在多边形内,如果交点为奇数,则点在多边形内. 原理虽是这样,有些细节还是要注意一下 ...

  6. zoj 1081 判断点在多边形内

    题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=81Points Within Time Limit: 2 Second ...

  7. Broken line - SGU 124(判断点与多边形的关系)

    题目大意:RT 分析:构造一条射线,如果穿越偶数条边,那么就在多边形外面,如果穿越奇数条边,那么就在多边形里面. 代码如下: ===================================== ...

  8. 判断点在多边形内算法的C++实现

    目录 1. 算法思路 2. 具体实现 3. 改进空间 1. 算法思路 判断平面内点是否在多边形内有多种算法,其中射线法是其中比较好理解的一种,而且能够支持凹多边形的情况.该算法的思路很简单,就是从目标 ...

  9. C# GDI+ 利用 Rectangle GraphicsPath 判断 矩形或多边形 图形关系

    最近在做一些简单的图像对比工作,总结了一些GDI+对象的使用方式,记录下来共享给大家使用. 判断Rectangl与多边形的关系 /// <summary> /// 是否包含输入范围 /// ...

随机推荐

  1. ios高效开发二--ARC跟block那点事

    block是可以捕捉上下文的特殊代码块. block可以访问定义在block外的变量,当在block中使用时,它就会为其在作用域内的每个标量变量创建一个副本. 如果通过self拥有一个block,然后 ...

  2. CNN卷机网络在自然语言处理问题上的应用

    首先申明本人的英语很搓,看英文非常吃力,只能用这种笨办法来方便下次阅读.有理解错误的地方,请别喷我. 什么是卷积和什么是卷积神经网络就不讲了,自行google.从在自然语言处理的应用开始(SO, HO ...

  3. js里写html代码 啥时候要用“\"转义

    当去掉\的时候 字体变黑 需要加\

  4. 数据库-mongodb-高级查询表达式

    不等于  $nq 1 2 SQL : select * where != 3 NOSQL : db.goods.find({cat_id:{$ne:3 }},{cat_id:1,id:0}); NOS ...

  5. mongodb后台执行

    默认的情况下,关闭shell,mongodb就停止执行了. 假设想在后台执行,启动时仅仅需加入 --fork函数就可以. 能够在日志路径后面加入--logappend.防止日志被删除. bin/mon ...

  6. UITableView属性 自己定义UITableViewCell

    UITableView的属性全齐.供大家參考 附:http://www.bubuko.com/infodetail-561085.html //曾经在使用UITableView的时候,总是在cell上 ...

  7. Qt容器类的对象模型及应用(线性结构篇:对于QList来说,sharable默认是false的,但对于接下来讲的QVector来说,sharable默认是true)

    用Qt做过项目开发的人,肯定使用过诸如QList.QVector.QLinkList这样的模板容器类,它们虽然名字长的不同,但使用方法都大致相同, 因为其使用方法都大体相同,很多人可能随便拿一个容器类 ...

  8. Api接口服务的设计和安全解决方案

    这个涉及到两个方面问题:一个是接口访问认证问题,主要解决谁可以使用接口(用户登录验证.来路验证)一个是数据数据传输安全,主要解决接口数据被监听(HTTPS安全传输.敏感内容加密.数字签名) 普通网站应 ...

  9. C#比较二个数组并找出相同或不同元素的方法

    这篇文章主要介绍了C#比较二个数组并找出相同或不同元素的方法,涉及C#针对数组的交集.补集等集合操作相关技巧,非常简单实用, 具有一定参考借鉴价值,需要的朋友可以参考下 " }; " ...

  10. How to include custom library into maven local repository?--转

    原文地址:https://www.mkyong.com/maven/how-to-include-library-manully-into-maven-local-repository/ There ...