SJTU 机试 最小面积子矩阵 压缩+双指针
链接:https://www.nowcoder.com/questionTerminal/8ef506fbab2742809564e1a288358554
来源:牛客网
一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积)
输入描述:
每个案例第一行三个正整数N,M<=100,表示矩阵大小,和一个整数K
接下来N行,每行M个数,表示矩阵每个元素的值
输出描述:
输出最小面积的值。如果出现任意矩阵的和都小于K,直接输出-1。
输入
4 4 10
1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16
输出
1
和NOIp 最大加权矩阵一个套路;
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstdlib>
#include<cstring>
#include<string>
#include<cmath>
#include<map>
#include<set>
#include<vector>
#include<queue>
#include<bitset>
#include<ctime>
#include<deque>
#include<stack>
#include<functional>
#include<sstream>
//#include<cctype>
//#pragma GCC optimize(2)
using namespace std;
#define maxn 200005
#define inf 0x7fffffff
//#define INF 1e18
#define rdint(x) scanf("%d",&x)
#define rdllt(x) scanf("%lld",&x)
#define rdult(x) scanf("%lu",&x)
#define rdlf(x) scanf("%lf",&x)
#define rdstr(x) scanf("%s",x)
typedef long long ll;
typedef unsigned long long ull;
typedef unsigned int U;
#define ms(x) memset((x),0,sizeof(x))
const long long int mod = 1e9;
#define Mod 1000000000
#define sq(x) (x)*(x)
#define eps 1e-5
typedef pair<int, int> pii;
#define pi acos(-1.0)
//const int N = 1005;
#define REP(i,n) for(int i=0;i<(n);i++)
typedef pair<int, int> pii; inline int rd() {
int x = 0;
char c = getchar();
bool f = false;
while (!isdigit(c)) {
if (c == '-') f = true;
c = getchar();
}
while (isdigit(c)) {
x = (x << 1) + (x << 3) + (c ^ 48);
c = getchar();
}
return f ? -x : x;
} ll gcd(ll a, ll b) {
return b == 0 ? a : gcd(b, a%b);
}
int sqr(int x) { return x * x; } /*ll ans;
ll exgcd(ll a, ll b, ll &x, ll &y) {
if (!b) {
x = 1; y = 0; return a;
}
ans = exgcd(b, a%b, x, y);
ll t = x; x = y; y = t - a / b * y;
return ans;
}
*/ int n, m, K;
int a[200][200];
bool fg;
int pre[maxn];
int dp[maxn];
int minn = inf;
void sol() {
for (int i = 1; i <= n; i++) {
ms(dp);
for (int j = i; j <= n; j++) {
ms(pre);
for (int k = 1; k <= m; k++)
dp[k] += a[j][k];
for (int k = 1; k <= m; k++)pre[k] = pre[k - 1] + dp[k];
int l = 1, r = 1;
while (1) {
if (r > m)break;
while (pre[r] - pre[l - 1] < K&&r <= m)r++;
if (pre[r] - pre[l - 1] >= K&&r<=m) {
minn = min(minn, (j - i + 1)*(r - l + 1));
fg = 1;
}
while (pre[r] - pre[l - 1] >= K && l <= r) {
minn = min(minn, (r - l + 1)*(j - i + 1));
l++;
fg = 1;
}
}
} }
}
int main()
{
//ios::sync_with_stdio(0);
rdint(n); rdint(m); rdint(K);
for (int i = 1; i <= n; i++) {
for (int j = 1; j <= m; j++)rdint(a[i][j]);
}
sol();
if (fg == 0)cout << -1 << endl;
else {
cout << minn << endl;
}
return 0;
}
SJTU 机试 最小面积子矩阵 压缩+双指针的更多相关文章
- 题目1102:最小面积子矩阵(暴力求解&最大连续子序列)
题目链接:http://ac.jobdu.com/problem.php?pid=1102 详解链接:https://github.com/zpfbuaa/JobduInCPlusPlus 参考代码: ...
- 九度OJ 1102:最小面积子矩阵 (DP、缓存、剪枝)
时间限制:1 秒 内存限制:32 兆 特殊判题:否 提交:1666 解决:504 题目描述: 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积) 输入: ...
- 九度oj 题目1102:最小面积子矩阵
题目描述: 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积) 输入: 每个案例第一行三个正整数N,M<=100,表示矩阵大小,和一个整数K接下来 ...
- SJTU 机试 数学
题目描述 给定n,a求最大的k,使n!可以被a^k整除但不能被a^(k+1)整除. 输入描述: 两个整数n(2<=n<=1000),a(2<=a<=1000) 输出描述: 一个 ...
- 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵
题目描述: 一个N*M的矩阵,找出这个矩阵中所有元素的和不小于K的面积最小的子矩阵(矩阵中元素个数为矩阵面积) 输入: 每个案例第一行三个正整数N,M<=100,表示矩阵大小,和一个整数K 接下 ...
- 【转】朱兆祺教你如何攻破C语言学习、笔试与机试的难点(连载)
原文网址:http://bbs.elecfans.com/jishu_354666_1_1.html 再过1个月又是一年应届毕业生应聘的高峰期了,为了方便应届毕业生应聘,笔者将大学四年C语言知识及去年 ...
- 华为JAVA机试流程
1.JAVA机试流程:①打开IE浏览器,输入机试系统IP地址(以当天告知的地址为准):②输入姓名.手机,选择“C/C++”或“JAVA”,登录:③登录后显示题目,阅读题目并点击页面最下方的“下载框架文 ...
- java机试要点
Java机试准备 一般结构: import java.util.Scanner; public class Main{ public static void main(String[] args) ...
- 2015 NI 校招笔试机试面试
美国国家仪器NI也算是入驻上海很好的一家外企了,它是我们院的合作公司,加上今年NI在我们院扩招实习生,这次是一个难得的机会可以进入NI实习,可惜我并没有好好把握... 一.笔试 几个做错的印象特别深刻 ...
随机推荐
- ISAP网络流算法
ISAP全称Improved Shortest Augmenting Path,意指在SAP算法进行优化.SAP即Edmonds-Karp算法,其具体思路是通过不断向残存网络推送流量来计算整个网络的最 ...
- 算法技巧讲解》关于对于递推形DP的前缀和优化
这是在2016在长沙集训的第三天,一位学长讲解了“前缀和优化”这一技巧,并且他这一方法用的很6,个人觉得很有学习的必要. 这一技巧能使线性递推形DP的速度有着飞跃性的提升,从O(N2)优化到O(N)也 ...
- DataTable 常用操作
//定义表结构 DataTable dt = new DataTable(); dt.Columns.Add("FactoryId"); 或dt.Columns.Add(new D ...
- mysql GROUP_CONCAT 可以将分组的字段进行拼接处理.
GROUP_CONCAT 可以将分组的字段进行拼接处理. SELECT g.id, g.merchant_id, g. NAME, g.introduction, g.cover_pic, g.pla ...
- 面试题:Java必知必会:异常机制详解 背1
一.Java异常概述 在Java中,所有的事件都能由类描述,Java中的异常就是由java.lang包下的异常类描述的. Trowable是所有异常的超类. 他的常用方法printStackTrec ...
- python文件处理os模块
一.os模块概述 Python os模块包含普遍的操作系统功能.如果你希望你的程序能够与平台无关的话,这个模块是尤为重要的.(一语中的) 二.常用方法 1.os.name 输出字符串指示正在使用的平台 ...
- 正确设置-Dfile.encoding参数
正确设置-Dfile.encoding参数 摘自:https://blog.csdn.net/youge/article/details/6178265 2011年02月11日 10:18:00 阅读 ...
- Go程序设计3——并发编程
1 channel 一般channel的声明形式为: var chanName chan ElementType 与一般的变量声明不同的地方仅仅是在类型之前增加了chan关键字.ElementType ...
- 第19章-使用Spring发送Email
1 配置Spring发送邮件 Spring Email抽象的核心是MailSender接口.顾名思义,MailSender的实现能够通过连接Email服务器实现邮件发送的功能,如图19.1所示. 图1 ...
- 编写高质量代码改善C#程序的157个建议——建议5: 使用int?来确保值类型也可以为null
建议5: 使用int?来确保值类型也可以为null 基元类型为什么需要为null?考虑两个场景: 1)数据库中一个int字段可以被设置为null.在C#中,值被取出来后,为了将它赋值给int类型,不得 ...