loj #2509. 「AHOI / HNOI2018」排列
#2509. 「AHOI / HNOI2018」排列
题目描述
给定 nnn 个整数 a1,a2,…,an(0≤ai≤n),以及 nnn 个整数 w1,w2,…,wn。称 a1,a2,…,an 的一个排列 ap[1],ap[2],…,ap[n] 为 a1,a2,…,an 的一个合法排列,当且仅当该排列满足:对于任意的 kkk 和任意的 jjj,如果 j≤kj \le kj≤k,那么 ap[j]a_{p[j]}ap[j] 不等于 p[k]p[k]p[k]。(换句话说就是:对于任意的 kkk 和任意的 jjj,如果 p[k]p[k]p[k] 等于 ap[j]a_{p[j]}ap[j],那么 k<jk<jk<j。)
定义这个合法排列的权值为 wp[1]+2wp[2]+…+nwp[n]。你需要求出在所有合法排列中的最大权值。如果不存在合法排列,输出 −1-1−1。
样例解释中给出了合法排列和非法排列的实例。
输入格式
第一行一个整数 nnn。
接下来一行 nnn 个整数,表示 a1,a2,…,an。
接下来一行 nnn 个整数,表示 w1,w2,…,wn。
输出格式
输出一个整数表示答案。
样例
样例输入 1
3
0 1 1
5 7 3
样例输出 1
32
样例解释 1
对于 a1=0,a2=1,a3=1a_1=0,a_2=1,a_3=1a1=0,a2=1,a3=1,其排列有
- a1=0,a2=1,a3=1a_1=0,a_2=1,a_3=1a1=0,a2=1,a3=1,是合法排列,排列的权值是 1∗5+2∗7+3∗3=281*5+2*7+3*3=281∗5+2∗7+3∗3=28;
- a2=1,a1=0,a3=1a_2=1,a_1=0,a_3=1a2=1,a1=0,a3=1,是非法排列,因为 ap[1]a_{p[1]}ap[1] 等于 p[2]p[2]p[2];
- a1=0,a3=1,a2=1a_1=0,a_3=1,a_2=1a1=0,a3=1,a2=1,是合法排列,排列的权值是 1∗5+2∗3+3∗7=321*5+2*3+3*7=321∗5+2∗3+3∗7=32;
- a3=1,a1=0,a2=1a_3=1,a_1=0,a_2=1a3=1,a1=0,a2=1,是非法排列,因为 ap[1]a_{p[1]}ap[1] 等于 p[2]p[2]p[2];
- a2=1,a3=1,a1=0a_2=1,a_3=1,a_1=0a2=1,a3=1,a1=0,是非法排列,因为 ap[1]a_{p[1]}ap[1] 等于 p[3]p[3]p[3];
- a3=1,a2=1,a1=0a_3=1,a_2=1,a_1=0a3=1,a2=1,a1=0,是非法排列,因为 ap[1]a_{p[1]}ap[1] 等于 p[3]p[3]p[3]。
因此该题输出最大权值 323232。
样例输入 2
3
2 3 1
1 2 3
样例输出 2
-1
样例解释 2
对于 a1=2,a2=3,a3=1a_1=2,a_2=3,a_3=1a1=2,a2=3,a3=1,其排列有:
- a1=2,a2=3,a3=1a_1=2,a_2=3,a_3=1a1=2,a2=3,a3=1,是非法排列,因为 ap[1]a_{p[1]}ap[1] 等于 p[2]p[2]p[2];
- a2=3,a1=2,a3=1a_2=3,a_1=2,a_3=1a2=3,a1=2,a3=1,是非法排列,因为 ap[1]a_{p[1]}ap[1] 等于 p[3]p[3]p[3];
- a1=2,a3=1,a2=3a_1=2,a_3=1,a_2=3a1=2,a3=1,a2=3,是非法排列,因为 ap[1]a_{p[1]}ap[1] 等于 p[3]p[3]p[3];
- a3=1,a1=2,a2=3a_3=1,a_1=2,a_2=3a3=1,a1=2,a2=3,是非法排列,因为 ap[2]a_{p[2]}ap[2] 等于 p[3]p[3]p[3];
- a2=3,a3=1,a1=2a_2=3,a_3=1,a_1=2a2=3,a3=1,a1=2,是非法排列,因为 ap[2]a_{p[2]}ap[2] 等于 p[3]p[3]p[3];
- a3=1,a2=3,a1=2a_3=1,a_2=3,a_1=2a3=1,a2=3,a1=2,是非法排列,因为 ap[1]a_{p[1]}ap[1] 等于 p[3]p[3]p[3]。
因此该题没有合法排列。
样例输入 3
10
6 6 10 1 7 0 0 1 7 7
16 3 10 20 5 14 17 17 16 13
样例输出 3
809
数据范围与提示
对于前 20%20\%20% 的数据,1≤n≤101 \le n \le 101≤n≤10;
对于前 40%40\%40% 的数据,1≤n≤151 \le n \le 151≤n≤15;
对于前 60%60\%60% 的数据,1≤n≤10001 \le n \le 10001≤n≤1000;
对于前 80%80\%80% 的数据,1≤n≤1000001 \le n \le 1000001≤n≤100000;
对于 100%100\%100% 的数据,1≤n≤5000001 \le n \le 5000001≤n≤500000,0≤ai≤n(1≤i≤n)0 \le a_i \le n (1 \le i \le n)0≤ai≤n(1≤i≤n),1≤wi≤1091 \le w_i \le 10^91≤wi≤109 ,所有 wiw_iwi 的和不超过 1.5×10131.5 \times 10^{13}1.5×1013。
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define maxn 500010
using namespace std;
int a[maxn],w[maxn],p[maxn],n;
long long ans=-;
bool check(){
for(int i=;i<=n;i++)
for(int j=i;j<=n;j++)
if(a[p[i]]==p[j])return ;
return ;
}
long long count(){
long long res=;
for(int i=;i<=n;i++)res+=1LL*i*w[p[i]];
return res;
}
int main(){
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=n;i++)scanf("%d",&w[i]);
for(int i=;i<=n;i++)p[i]=i;
do{
long long ww=count();
if(ans>=ww)continue;
if(check())ans=max(ans,ww);
}while(next_permutation(p+,p+n+));
cout<<ans;
return ;
}
20分 枚举全排列
#include<iostream>
#include<cstdio>
#include<cstring>
#include<queue>
#define maxn 500010
using namespace std;
int n,a[maxn],fa[maxn],sz[maxn];
long long sum[maxn],ans;
struct node{
long long v;
int s,x;
bool operator < (const node &b)const{
return v*b.s>b.v*s;
}
};
priority_queue<node>q;
long long qread(){
long long i=,j=;
char ch=getchar();
while(ch<''||ch>''){if(ch=='-')j=-;ch=getchar();}
while(ch<=''&&ch>=''){i=i*+ch-'';ch=getchar();}
return i*j;
}
int find(int x){
if(fa[x]==x)return x;
return fa[x]=find(fa[x]);
}
int main(){
n=qread();
for(int i=;i<=n;i++)fa[i]=i;
for(int i=;i<=n;i++){
a[i]=qread();
int f1=find(i),f2=find(a[i]);
if(f1==f2){puts("-1");return ;}
fa[f1]=f2;
}
for(int i=;i<=n;i++)sum[i]=qread();
for(int i=;i<=n;i++)sz[i]=,fa[i]=i;
for(int i=;i<=n;i++)q.push((node){sum[i],sz[i],i});
while(!q.empty()){
node tmp=q.top();q.pop();
if(tmp.s!=sz[tmp.x])continue;
int f1=find(a[tmp.x]);
ans+=tmp.v*sz[f1];
fa[tmp.x]=f1;
sz[f1]+=tmp.s;
sum[f1]+=tmp.v;
if(f1)q.push((node){sum[f1],sz[f1],f1});
}
cout<<ans;
return ;
}
100分 并查集
loj #2509. 「AHOI / HNOI2018」排列的更多相关文章
- loj#2509. 「AHOI / HNOI2018」排列(思维题 set)
题意 题目链接 Sol 神仙题Orz 首先不难看出如果我们从\(a_i\)向\(i\)连一条边,我们会得到以\(0\)为根的树(因为每个点一定都有一个入度,出现环说明无解),同时在进行排列的时候需要保 ...
- 【LOJ】#2509. 「AHOI / HNOI2018」排列
题解 虽然要求一个dfs序,但是不是从根开始贪心 从最小的点开始贪心,最小的点显然是父亲选了之后马上就选它 那么我们每次把最小的点和父亲合并,两个联通块之间也是如此 对于两个联通块,他们合并的顺序应该 ...
- Loj #2495. 「AHOI / HNOI2018」转盘
Loj #2495. 「AHOI / HNOI2018」转盘 题目描述 一次小 G 和小 H 原本准备去聚餐,但由于太麻烦了于是题面简化如下: 一个转盘上有摆成一圈的 \(n\) 个物品(编号 \(1 ...
- Loj #2494. 「AHOI / HNOI2018」寻宝游戏
Loj #2494. 「AHOI / HNOI2018」寻宝游戏 题目描述 某大学每年都会有一次 Mystery Hunt 的活动,玩家需要根据设置的线索解谜,找到宝藏的位置,前一年获胜的队伍可以获得 ...
- loj #2510. 「AHOI / HNOI2018」道路
#2510. 「AHOI / HNOI2018」道路 题目描述 W 国的交通呈一棵树的形状.W 国一共有 n−1 个城市和 nnn 个乡村,其中城市从 111 到 n−1 编号,乡村从 111 到 n ...
- loj #2508. 「AHOI / HNOI2018」游戏
#2508. 「AHOI / HNOI2018」游戏 题目描述 一次小 G 和小 H 在玩寻宝游戏,有 nnn 个房间排成一列,编号为 1,2,…,n,相邻房间之间都有 111 道门.其中一部分门上有 ...
- @loj - 2496@ 「AHOI / HNOI2018」毒瘤
目录 @description@ @solution@ @accepted code@ @details@ @description@ 从前有一名毒瘤. 毒瘤最近发现了量产毒瘤题的奥秘.考虑如下类型的 ...
- loj#2510. 「AHOI / HNOI2018」道路 记忆化,dp
题目链接 https://loj.ac/problem/2510 思路 f[i][a][b]表示到i时,公路个数a,铁路个数b 记忆化 复杂度=状态数=\(nlog^2n\) 代码 #include ...
- loj#2020 「AHOI / HNOI2017」礼物 ntt
loj#2020 「AHOI / HNOI2017」礼物 链接 bzoj没\(letex\),差评 loj luogu 思路 最小化\(\sum\limits_1^n(a_i-b_i)^2\) 设改变 ...
随机推荐
- List<T>直接充当Combox控件DataSource并扩展自定义记录的方法
一般认为List只有转换为DataTable后才能充当CombBox的数据源,其实不然: List<SYS_COMMANDS> comdList = _menuMan.Load(c =&g ...
- 使用Statement接口实现增,删,改操作(工作中不常用这个,而用PreparedStatement接口)
一.Statement接口 作用:用于执行静态 SQL 语句并返回它所生成结果的对象. 1. 创建数据库连接类及相册实体,代码如下: package com.learn.jdbc.util; impo ...
- Halcon学习之边缘检测函数
sobel_amp ( Image : EdgeAmplitude : FilterType, Size : ) 根据图像的一次导数计算图像的边缘 close_edges ( Edges, EdgeI ...
- LinqHelper连接数据库配置
LinqHelper连接数据库配置/// <summary> /// Linq通用数据访问类 /// 指定TDataBase来代替后面要使用的数据上下文(指代) /// where:说明指 ...
- leetcode784
这道题经过独立思考,通过使用二进制编码的方式来进行处理.分几个步骤一层一层的处理,最终解决了,这道题感觉应该属于medimu级别. public class Solution { /// <su ...
- openGL 纹理05
纹理(Texture) 为了能够把纹理映射(Map)到三角形上,我们需要指定三角形的每个顶点各自对应纹理的哪个部分. 这样每个顶点就会关联着一个纹理坐标(Texture Coordinate) 用来标 ...
- oracle使用exp/imp导入导出(用户)
实例,从远程机器上导出nxgy用户的所有对象和数据,然后导入到本机数据库的nxgy用户里(用户名可自定义) 如果本机nxgy用户已经存在(数据没用,可以删除),级联删除用户所有对象 首先,从远程机器上 ...
- jquery动画效果总结
一.jquery的动画速度fast-slow对应着600ms,200ms,不写是400ms 二.禁用jquery的动画 将jQuery.fx.off设置为true即可 $(".stoppin ...
- 696. Count Binary Substrings统计配对的01个数
[抄题]: Give a string s, count the number of non-empty (contiguous) substrings that have the same numb ...
- jQuery--左侧菜单收缩隐藏
实现步骤: 步骤一. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 ...