[Leetcode] subsets 求数组所有的子集
Given a set of distinct integers, S, return all possible subsets.
Note:
- Elements in a subset must be in non-descending order.
- The solution set must not contain duplicate subsets.
For example,
If S =[1,2,3], a solution is:
[
[3],
[1],
[2],
[1,2,3],
[1,3],
[2,3],
[1,2],
[]
]
题意:求数组的所有子集,子集不用如例子中那样排序。
思路:题中要求子集中非降序排列,所以要先进行排序。方法一是使用DFS遍历。如:[1,2,3] ,依次加入[ ]、[1]、[1,2]、[1,2,3]、[1,3]、[2]、[2,3]、[3]。图形化的说明参见这里。代码如下:
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S)
{
vector<vector<int>> res;
vector<int> midArray;
sort(S.begin(),S.end());
getSubsets(S,,midArray,res);
return res;
}
void getSubsets(vector<int> &S,int beg,vector<int> &midArray,vector<vector<int>> &res)
{
res.push_back(midArray);
for(int i=beg;i<S.size();++i)
{
midArray.push_back(S[i]);
getSubsets(S,i+,midArray,res);
midArray.pop_back();
}
}
};
方法二:使用迭代法,思路:拿res中已经存在的元素和新的组合,然后重新放入res中,先给res中放入一个空元素,然后通过空元素和S中第一个元素结合放入res中,以此类推,参考了Grandyang的博客。如:[1,2,3],最开始是空集,那么我们现在要处理1,就在空集上加1,为[1],结果中位[]和[1],下面处理2,在之前的子集基础上,每个都加个2,可以分别得到[2],[1, 2],那么现在所有的子集合为[], [1], [2], [1, 2],同理处理3的情况可得[3], [1, 3], [2, 3], [1, 2, 3], 再加上之前的子集就是所有的子集合了,代码如下:
class Solution {
public:
vector<vector<int> > subsets(vector<int> &S)
{
vector<vector<int>> res(); //放入空
if(S.size()) return res;
sort(S.begin(),S.end());
for(int i=;i<S.size();++i)
{
int midSize=res.size();
for(int j=;j<midSize;++j) //实时结合
{
res.push_back(res[j]);
res.back().push_back(S[i]);
}
}
return res;
}
};
在牛客网上,之前通过,现在显示如下,吐槽一下。

Felix对给定一个集合,求出这个集合所有的子集(所谓子集,就是包含原集合中的一部分元素的集合)进行了总结。
[Leetcode] subsets 求数组所有的子集的更多相关文章
- [Leetcode 90]求含有重复数的子集 Subset II
[题目] Given a collection of integers that might contain duplicates, nums, return all possible subsets ...
- [Leetcode] subsets ii 求数组所有的子集
Given a collection of integers that might contain duplicates, S, return all possible subsets. Note: ...
- [Leetcode 78]求子集 Subset
[题目] Given a set of distinct integers, nums, return all possible subsets (the power set). Note: The ...
- [Leetcode 216]求给定和的数集合 Combination Sum III
[题目] Find all possible combinations of k numbers that add up to a number n, given that only numbers ...
- Leetcode之回溯法专题-90. 子集 II(Subsets II)
Leetcode之回溯法专题-90. 子集 II(Subsets II) 给定一个可能包含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入 ...
- Leetcode之回溯法专题-78. 子集(Subsets)
Leetcode之回溯法专题-78. 子集(Subsets) 给定一组不含重复元素的整数数组 nums,返回该数组所有可能的子集(幂集). 说明:解集不能包含重复的子集. 示例: 输入: nums = ...
- [LeetCode] Find Peak Element 求数组的局部峰值
A peak element is an element that is greater than its neighbors. Given an input array where num[i] ≠ ...
- 78 Subsets(求子集Medium)
题目意思:求解一个数组的所有子集,子集内的元素增序排列eg:[1,3,2] result:[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]思路:这是一个递推的过程 [] ...
- LeetCode:Subsets I II
求集合的所有子集问题 LeetCode:Subsets Given a set of distinct integers, S, return all possible subsets. Note: ...
随机推荐
- React学习(4)——向服务器请求数据并显示
本文中涉及到的技术包括:node.js/express服务器的搭建.fetch发送数据请求. 在之前的几篇文章中,介绍了如何搭建基础的React项目,以及一些简单知识,现在,我们还需要掌握如何用Rea ...
- [转]不让iTunes备份到c盘
很多人现在的C盘都是空间不大的SSD硬盘,ITUNES备份老是占越来越大的空间,不如动手把它改成其它盘好了.下面7个步骤教你转移备份. 1.需要一个小工具:Juction.exe,如果你已经是WIN7 ...
- phpcms2008网站漏洞如何修复 远程代码写入缓存漏洞利用
SINE安全公司在对phpcms2008网站代码进行安全检测与审计的时候发现该phpcms存在远程代码写入缓存文件的一个SQL注入漏洞,该phpcms漏洞危害较大,可以导致网站被黑,以及服务器遭受黑客 ...
- Unicode控制字符
Unicode控制字符就是特殊的Unicode字符 控制字符转义代码对照表 Unicode-控制字符 LRM RLM ZWJ ZWNJ LRE LRO RLO PDF NADS ...
- CentOs安装Mysql和配置初始密码
mysql官网yum安装教程,地址:https://dev.mysql.com/doc/mysql-yum-repo-quick-guide/en/#repo-qg-yum-fresh-install ...
- Kubernetes-创建集群(四)
Kubernetes可以运行在多种平台,从笔记本到云服务商的虚拟机,再到机架上的裸机服务器.要创建一个Kubernetes集群,根据不同的场景需要做的也不尽相同,可能是运行一条命令,也可能是配置自己定 ...
- CERC2017 Gambling Guide,最短路变形,期望dp
题意 给定一个无向图,你需要从1点出发到达n点,你在每一点的时候,使用1个单位的代价,随机得到相邻点的票,但是你可以选择留在原地,也可以选择使用掉这张票,问到达n点的最小代价的方案的期望是多少. 分析 ...
- .Net 面试题 汇总(一)
1.@page指令只能在_aspx___文件(填写扩展名)中使用,而@Control指令只能用在_ascx___文件(填写扩展名)中使用. 2.说明控件DataGrid,DataTable,DataV ...
- Hadoop学习(一) Hadoop是什么
Hadoop是什么? Hadoop是一个开发和运行处理大规模数据的软件平台,是Appach的一个用Java语言实现开源软件框架,实现在大量计算机组成的集群中对海量数据进行分布式计算. Hadoop框架 ...
- python中的os,shutil模块的定义以及用法
# os 模块 os.sep 可以取代操作系统特定的路径分隔符.windows下为 '\\' os.name 字符串指示你正在使用的平台.比如对于Windows,它是'nt',而对于Linux/Uni ...