[ZOJ2341]Reactor Cooling解题报告|带上下界的网络流|无源汇的可行流
Reactor Cooling
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear reactor to produce plutonium for the nuclear bomb they are planning to create. Being the wicked computer genius of this group, you are responsible for developing the cooling system for the reactor.
The cooling system of the reactor consists of the number of pipes that special cooling liquid flows by. Pipes are connected at special points, called nodes, each pipe has the starting node and the end point. The liquid must flow by the pipe from its start point to its end point and not in the opposite direction.
Let the nodes be numbered from 1 to N. The cooling system must be designed so that the liquid is circulating by the pipes and the amount of the liquid coming to each node (in the unit of time) is equal to the amount of liquid leaving the node. That is, if we designate the amount of liquid going by the pipe from i-th node to j-th as fij, (put fij= 0 if there is no pipe from node i to node j), for each i the following condition must hold:
fi,1+fi,2+...+fi,N = f1,i+f2,i+...+fN,i
Each pipe has some finite capacity, therefore for each i and j connected by the pipe must be fij <= cij where cij is the capacity of the pipe. To provide sufficient cooling, the amount of the liquid flowing by the pipe going from i-th to j-th nodes must be at least lij, thus it must be fij >= lij.
Given cij and lij for all pipes, find the amount fij, satisfying the conditions specified above.
This problem contains multiple test cases!
The first line of a multiple input is an integer N, then a blank line followed by N input blocks. Each input block is in the format indicated in the problem description. There is a blank line between input blocks.
The output format consists of N output blocks. There is a blank line between output blocks.
Input
The first line of the input file contains the number N (1 <= N <= 200) - the number of nodes and and M - the number of pipes. The following M lines contain four integer number each - i, j, lij and cij each. There is at most one pipe connecting any two nodes and 0 <= lij <= cij <= 10^5 for all pipes. No pipe connects a node to itself. If there is a pipe from i-th node to j-th, there is no pipe from j-th node to i-th.
Output
On the first line of the output file print YES if there is the way to carry out reactor cooling and NO if there is none. In the first case M integers must follow, k-th number being the amount of liquid flowing by the k-th pipe. Pipes are numbered as they are given in the input file.
第一次在浙大的OJ上做题w
题意大概就是给定一张管道网络以及每一根管道流量的上界和下界
判断是否存在可行流,以及如果存在的话输出一组可行流
感谢NewFarking的文章 (戳这里
做法还是理解了一会儿的呢..
对于一根管道(u,v),设其流量限制为[l,r]
为了简便地解决这个问题我们有一个初步的想法
就是先强制流掉下限流量,然后剩下的给出流量限制之后再随意流
实际上代码也基本是这样实现的
先从u到v连一条容量为r-l的边,也就是自由流
看起来我们将这根管道的下限流确实是流掉了呢
但是整张网络并没有
比如这张图
w到u必须流掉的10单位流量,但从u出发只强制流掉了5单位的流量
还有5单位的流量必须流出去
用什么来强制流出去呢?
答案是从s到u建一条容量为5的边
因为我们最终判断是否存在可行流的条件是s连出的边是否全部满流
那么一旦存在可行解,这5个单位的流量全流出去了,能达到我们的目的
这道题让我们输出一组可行解,我是在Dfs的过程中处理的
UPD.顺便写一写其他几种的建图方法:
有源汇的可行流:转换成无源汇的可行流来做,即从t→s连一条容量为正无穷
无下限的边,整个图就转化成了循环图
有源汇的最大流/有源汇的最小流:拆边的方法太奇怪不好理解
二分t→s的下限即可
program zoj2314;
const maxn = ;maxm = ;
var fa,next,ter,w,rec,flow:array[-..maxm]of longint;
link,dis,opt,inp:array[-..maxn]of longint;
vis:array[-..maxn]of boolean;
n,m,e,tt,test,i,s,t,x,y,l,r:longint; function min(a,b:longint):longint;
begin
if a<b then exit(a) else exit(b);
end; function spfa:boolean;
var head,tail,x,j:longint;
begin
fillchar(vis,sizeof(vis),true);
fillchar(dis,sizeof(dis),);
head:=;tail:=;opt[]:=s;vis[s]:=false;dis[s]:=;
while head<>tail do
begin
head:=(head+) mod maxn;
x:=opt[head];j:=link[x];
while j<> do
begin
if (dis[x]+<dis[ter[j]])and(w[j]>) then
begin
dis[ter[j]]:=dis[x]+;
if vis[ter[j]] then
begin
vis[ter[j]]:=false;
tail:=(tail+) mod maxn;
opt[tail]:=ter[j];
end;
end;
j:=next[j];
end;
vis[x]:=true;
end;
if dis[t]<>dis[t+] then exit(true) else exit(false);
end; function dfs(p,sum:longint):longint;
var tem,j,x:longint;
begin
tem:=;
if p=t then exit(sum);
j:=link[p];
while j<> do
begin
if (dis[ter[j]]=dis[p]+)and(w[j]>) then
begin
x:=dfs(ter[j],min(sum-tem,w[j]));
inc(tem,x);dec(w[j],x);inc(w[rec[j]],x);
// writeln(p,' ',ter[j],' ',fa[j],' ',x);
if rec[j]=j+ then inc(flow[fa[j]],x) else dec(flow[fa[rec[j]]],x);
if tem=sum then exit(sum);
end;
j:=next[j];
end;
exit(tem);
end; procedure add(x,y,z,fat:longint);
begin
// writeln(x,' ',y,' ',z);
inc(e);ter[e]:=y;next[e]:=link[x];link[x]:=e;w[e]:=z;fa[e]:=fat;rec[e]:=e+;
inc(e);ter[e]:=x;next[e]:=link[y];link[y]:=e;w[e]:=;fa[e]:=fat;rec[e]:=e-;
end; function Jud:boolean;
var j:longint;
begin
j:=link[s];
while j<> do
begin
if w[j]> then exit(false);
j:=next[j];
end;
exit(true);
end; procedure Solve;
var i,sum:longint;
begin
sum:=;
while spfa do inc(sum,dfs(s,));
if not Jud then writeln('NO') else
begin
writeln('YES');
for i:= to m do writeln(flow[i]);
end;
writeln;
end; begin
//assign(input,'zoj2314.in');reset(input);
readln(test);
for tt:= to test do
begin
readln;
readln(n,m);
fillchar(inp,sizeof(inp),);
fillchar(link,sizeof(link),);
fillchar(next,sizeof(next),);
e:=;s:=;t:=n+;
for i:= to m do
begin
readln(x,y,l,r);
flow[i]:=l;
dec(inp[x],l);inc(inp[y],l);
add(x,y,r-l,i);
end;
for i:= to n do if inp[i]> then add(s,i,inp[i],) else
if inp[i]< then add(i,t,-inp[i],);
Solve;
end;
end.
[ZOJ2341]Reactor Cooling解题报告|带上下界的网络流|无源汇的可行流的更多相关文章
- ZOJ 2314 Reactor Cooling 带上下界的网络流
题目链接:http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=1314 题意: 给n个点,及m根pipe,每根pipe用来流躺液体的, ...
- sgu 194 Reactor Cooling(有容量上下界的无源无汇可行流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=20757 [题意] 求有容量上下界的无源无汇可行流. [思路] ...
- SGU 194 【带上下界的无源汇的可行流】
题意: 给点数n和边数m. 接下来m条有向边. a b c d 一次代表起点终点,下界上界. 求: 判断是否存在可行流,若存在则输出某可行流.否则输出IMPOSSIBLE 思路: <一种简易的方 ...
- 【HDU 4940】Destroy Transportation system(无源无汇带上下界可行流)
Description Tom is a commander, his task is destroying his enemy’s transportation system. Let’s repr ...
- ZOJ2314 Reactor Cooling(有上下界的网络流)
The terrorist group leaded by a well known international terrorist Ben Bladen is buliding a nuclear ...
- SGU 194. Reactor Cooling(无源汇有上下界的网络流)
时间限制:0.5s 空间限制:6M 题意: 显然就是求一个无源汇有上下界的网络流的可行流的问题 Solution: 没什么好说的,直接判定可行流,输出就好了 code /* 无汇源有上下界的网络流 * ...
- 【ZOJ2314】Reactor Cooling(有上下界的网络流)
前言 话说有上下界的网络流好像全机房就我一个人会手动滑稽,当然这是不可能的 Solution 其实这道题目就是一道板子题,主要讲解一下怎么做无源无汇的上下界最大流: 算法步骤 1.将每条边转换成0~u ...
- ZOJ 2314 带上下界的可行流
对于无源汇问题,方法有两种. 1 从边的角度来处理. 新建超级源汇, 对于每一条有下界的边,x->y, 建立有向边 超级源->y ,容量为x->y下界,建立有向边 x-> 超级 ...
- BZOJ2150 部落战争 【带上下界最小流】
题目链接 BZOJ2150 题解 复习: 带上下界网络流两种写法: 不建\(T->S\)的\(INF\)的边,即不考虑源汇点,先求出此时超级源汇的最大流,即无源汇下最大的自我调整,再加入该边,求 ...
随机推荐
- 【BZOJ 1269】文本编辑器
题目 这些日子,可可不和卡卡一起玩了,原来可可正废寝忘食的想做一个简单而高效的文本编辑器.你能帮助他吗?为了明确任务目标,可可对"文本编辑器"做了一个抽象的定义: Move k:将 ...
- jmeter-maven-plugin
Maven编译JMeter, 使用的是jmeter-maven-plugin插件: <?xml version="1.0" encoding="UTF-8" ...
- 12-Mysql数据库----多表查询
本节重点: 多表连接查询 符合条件连接查询 子查询 准备工作:准备两张表,部门表(department).员工表(employee) create table department( id int, ...
- Prim求MST最小生成树
最小生成树即在一个图中用最小权值的边将所有点连接起来.prim算法求MST其实它的主要思路和dijkstra的松弛操作十分相似 prim算法思想:在图中随便找一个点开始这里我们假定起点为“1”,以点1 ...
- day-9 sklearn库和python自带库实现最近邻KNN算法
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一.该方法的思路是:如果一个样本在特征空间中的k个最相似(即特征空间中最邻近)的 ...
- HDU 5794 A Simple Chess Lucas定理+dp
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5794 题意概述: 给出一个N*M的网格.网格上有一些点是障碍,不能经过.行走的方式是向右下角跳马步.求 ...
- [android]不解锁刷机
本人因为误操作进入andriod recovery模式,显示failed to boot 2,致手机无法恢复出厂值, 当时那叫一个郁闷.上论坛搜寻无数,唉让刷底包的无数(在此不解释),万恶的刷底包. ...
- lintcode-109-数字三角形
109-数字三角形 给定一个数字三角形,找到从顶部到底部的最小路径和.每一步可以移动到下面一行的相邻数字上. 注意事项 如果你只用额外空间复杂度O(n)的条件下完成可以获得加分,其中n是数字三角形的总 ...
- PAT 1089 狼人杀-简单版
https://pintia.cn/problem-sets/994805260223102976/problems/1038429385296453632 以下文字摘自<灵机一动·好玩的数学& ...
- php实现base64图片上传方式实例代码
<?php /** * base64图片上传 * @param $base64_img * @return array */ header("content-type:text/htm ...