[BZOJ1006] [HNOI2008] 神奇的国度 (弦图)
Description
K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA
相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关系等等的存在.所谓N边关系,是指N个人 A1A2
...An之间仅存在N对认识关系:(A1A2)(A2A3)...(AnA1),而没有其它认识关系.比如四边关系指ABCD四个人 AB,BC,C
D,DA相互认识,而AC,BD不认识.全民比赛时,为了防止做弊,规定任意一对相互认识的人不得在一队,国王相知道,
最少可以分多少支队。
Input
第一行两个整数N,M。1<=N<=10000,1<=M<=1000000.表示有N个人,M对认识关系. 接下来M行每行输入一对朋
友
Output
输出一个整数,最少可以分多少队
Sample Input
1 2
1 4
2 4
2 3
3 4
Sample Output
HINT
一种方案(1,3)(2)(4)
Source
Solution
cdq《弦图与区间图》论文题
题意保证图为弦图,然后本题又是求最小染色,于是用$MCS$算法求一个完美消除序列,倒着贪心即可,论文里有说明
原论文里使用了桶排序使得其为$O(n+m)$,蒟蒻智商余额不足表示看不懂,于是用的优先队列,大概是$O((n+m)log(n+m))$
(咦好多人都是$O(n^2+m)$的?啊不怕不怕啦!)
#include <bits/stdc++.h>
using namespace std;
struct edge
{
int v, nxt;
}e[];
int fst[], label[], s[], vis[];
priority_queue<pair<int, int> > PQ; void addedge(int i, int u, int v)
{
e[i] = (edge){v, fst[u]}, fst[u] = i;
} int main()
{
int n, m, u, v, ans = ;
scanf("%d%d", &n, &m);
for(int i = ; i <= m; ++i)
{
scanf("%d%d", &u, &v);
addedge(i << , u, v);
addedge(i << | , v, u);
}
for(int i = ; i <= n; ++i)
PQ.push(make_pair(, i));
for(int i = n; i; --i)
{
u = PQ.top().second, PQ.pop();
while(vis[u])
u = PQ.top().second, PQ.pop();
s[i] = u, vis[u] = -;
for(int j = fst[u]; j; j = e[j].nxt)
{
v = e[j].v;
if(vis[v]) continue;
PQ.push(make_pair(++label[v], v));
}
}
memset(label, , sizeof(label));
for(int i = n; i; --i)
{
for(int j = fst[s[i]]; j; j = e[j].nxt)
vis[label[e[j].v]] = i;
for(int j = ; ; ++j)
if(vis[j] != i)
{
label[s[i]] = j, ans = max(ans, j);
break;
}
}
printf("%d\n", ans);
return ;
}
[BZOJ1006] [HNOI2008] 神奇的国度 (弦图)的更多相关文章
- [bzoj1006](HNOI2008)神奇的国度(弦图最小染色)【太难不会】
Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的.为了巩固三角关系,K国禁止四边关系,五边关 ...
- BZOJ1006:[HNOI2008]神奇的国度(弦图染色)
Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则.他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的. 为了巩固三角关系,K国禁止四边关系,五边关 ...
- 【BZOJ】1006: [HNOI2008]神奇的国度 弦图消除完美序列问题
1006: [HNOI2008]神奇的国度 Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角原则. 他们认为三角关系:即AB相互认识,BC相互认识,CA相互认识,是简洁高效的 ...
- bzoj 1006: [HNOI2008]神奇的国度 弦图的染色问题&&弦图的完美消除序列
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 1788 Solved: 775[Submit][Stat ...
- bzoj 1006: [HNOI2008]神奇的国度 -- 弦图(最大势算法)
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MB Description K国是一个热衷三角形的国度,连人的交往也只喜欢三角 ...
- bzoj 1006 [HNOI2008]神奇的国度 弦图+完美消除序列+最大势算法
[HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 4370 Solved: 2041[Submit][Status][D ...
- ●BZOJ 1006 [HNOI2008]神奇的国度(弦图最小染色数)○ZOJ 1015 Fishing Net
●赘述题目 给出一张弦图,求其最小染色数. ●题解 网上的唯一“文献”:<弦图与区间图>(cdq),可以学习学习.(有的看不懂) 摘录几个解决改题所需的知识点: ●子图和诱导子图(一定要弄 ...
- BZOJ 1006: [HNOI2008]神奇的国度(弦图)
传送门 解题思路 弦图就是图中任意一个大小\(>=4\)的环至少存在一条两个节点不相邻的边,这样的图称为弦图,弦图有许多优美的性质.一个无向图是弦图当且仅当它有一个完美消除序列,完美消除序列就是 ...
- bzoj1006 [HNOI2008]神奇的国度
1006: [HNOI2008]神奇的国度 Time Limit: 20 Sec Memory Limit: 162 MBSubmit: 2304 Solved: 1043 Description ...
随机推荐
- PLECS_直流电机基本系统模型
1.模型图 2.模型仿真结果 (1)Step阶跃t=1s,R=20Ω,V_dc = 120V,那么此时 电源电压波形: 电机电枢电流波形: 电机电磁转矩: 电机转速波形: (2)其他参数不变将R=30 ...
- TensorFlow实战之实现自编码器过程
关于本文说明,已同步本人另外一个博客地址位于http://blog.csdn.net/qq_37608890,详见http://blog.csdn.net/qq_37608890/article/de ...
- 免费 Https 证书(Let's Encrypt)申请与配置
之前要申请免费的 https 证书操作步骤相当麻烦,今天看到有人在讨论,就搜索了一下.发现现在申请步骤简单多了. 1. 下载 certbot git clone https://github.com/ ...
- html拨打电话、发送短信、发送邮件的链接写法
拨打电话 <a href="tel:88888888">呼叫</a> 发送短信 <a href="sms:88888888"> ...
- Ubuntu16.04下的NetCore环境搭建
跨平台系列汇总:http://www.cnblogs.com/dunitian/p/4822808.html#linux VSCode安装:http://www.cnblogs.com/dunitia ...
- 在web工程中设置首页的页面
有些时候删除了系统自带的index.jsp删除后会出现如下图错误 解决办法,新创建一个以你自己命名的jsp文件,然后在对该web工程的WEB-INF 目录下的web.xml进行添加加上下面的注释所带的 ...
- Enable multi-tenancy on ironic
Multi-tenancy 是openstack ironic从Ocata版本开始支持的新特性,通过network-generic-switch插件控制交换机,Ironic可以实现在不同租户间机网络隔 ...
- ActiveMq笔记2-消息持久化
为了避免意外宕机以后丢失信息,需要做到重启后可以恢复消息队列,消息系统一般都会采用持久化机制. ActiveMQ的消息持久化机制有JDBC,AMQ,KahaDB和LevelDB, 无论使用哪种持久化方 ...
- BZOJ 2429: [HAOI2006]聪明的猴子
Description 在一个热带雨林中生存着一群猴子,它们以树上的果子为生.昨天下了一场大雨,现在雨过天晴,但整个雨林的地 表还是被大水淹没着,部分植物的树冠露在水面上.猴子不会游泳,但跳跃能力比较 ...
- Redis持久化存储
Redis是一个支持持久化的内存数据库,也就是说redis需要经常将内存中的数据同步到磁盘来保证持久化.redis支持四种持久化方式,一是 Snapshotting(快照)也是默认方式:二是Appen ...