[开发技巧]·Numpy中对axis的理解与应用

1.问题描述

在使用Numpy时我们经常要对Array进行操作,如果需要针对Array的某一个纬度进行操作时,就会用到axis参数。

一般的教程都是针对二维矩阵操作axis,当axis为0时,计算方向时列,当axis为1时计算方向为行。

但是这样的描述并不能让我们真正理解axis的含义。下面我一个三维Array,来带领大家深入理解axis

2.实战讲解

>>> import numpy as np
>>> arrays = np.arange(0,12).reshape([2,3,2])
>>> arrays
array([[[ 0, 1],
[ 2, 3],
[ 4, 5]], [[ 6, 7],
[ 8, 9],
[10, 11]]])
>>> np.sum(arrays)
66
>>> np.sum(arrays,axis=0)
array([[ 6, 8],
[10, 12],
[14, 16]])
>>> np.sum(arrays,axis=1)
array([[ 6, 9],
[24, 27]])
>>> np.sum(arrays,axis=2)
array([[ 1, 5, 9],
[13, 17, 21]])

为什么是这个结果呢,笔者来帮大家说梳理一下:

首先我们新建了一个shape(2,3,3)的Array

1.用np.sum(arrays)时,计算的是所有元素的和。

2.用np.sum(arrays,axis = 0)时,我们可以这样理解,以最外面的[ ]为一个list,对里面两个元素(每个元素都是二维Array)进行相加求和,所以得到的Array和相加元素形状相同。

2.用np.sum(arrays,axis = 1)时,以中间的[ ]为一个list,对里面三个元素(每个元素都是一维Array)进行相加求和,所以得到的Array和相加元素形状相同,但是由于有两个中间的[ ],所以把两个拼接在了一起。

3.用np.sum(arrays,axis = 2)时,以最里面的[ ]为一个list,对里面两个元素(每个元素都是一个人说)进行相加求和,所以得到的Array和相加元素形状相同,但是由于有两个中间的[ ],每个中间的[ ]包含三个[ ],最终shape为(2,3)。

类似其实我们在使用下标选取内容时使用相同的概念

>>> import numpy as np
>>> arrays = np.arange(0,12).reshape([2,3,2])
>>> arrays
array([[[ 0, 1],
[ 2, 3],
[ 4, 5]], [[ 6, 7],
[ 8, 9],
[10, 11]]])
>>> arrays[0,:,:]
array([[0, 1],
[2, 3],
[4, 5]])
>>> arrays[:,0,:]
array([[0, 1],
[6, 7]])
>>> arrays[:,:,0]
array([[ 0, 2, 4],
[ 6, 8, 10]])
>>>

大家可以根据笔者上面讲述的,好好理解分析一下为什么是这样。

hope this helps

[开发技巧]·Numpy中对axis的理解与应用的更多相关文章

  1. [开发技巧]·Numpy广播机制的深入理解与应用

    [开发技巧]·Numpy广播机制的深入理解与应用 1.问题描述 我们在使用Numpy进行数据的处理时,经常会用到广播机制来简化操作,例如在所有元素都加上一个数,或者在某些纬度上作相同的操作.广播机制很 ...

  2. [开发技巧]·TensorFlow中numpy与tensor数据相互转化

    [开发技巧]·TensorFlow中numpy与tensor数据相互转化 个人主页–> https://xiaosongshine.github.io/ - 问题描述 在我们使用TensorFl ...

  3. numpy 中的axis轴问题

    在numpy库中,axis轴的问题比较重要,不同的值会得到不同的结果,为了便于理解,特此将自己的理解进行梳理 为了梳理axis,借助于sum函数进行! a = np.arange(27).reshap ...

  4. 关于NumPy中数组轴的理解

    参考原文链接(英文版):https://www.sharpsightlabs.com/blog/numpy-axes-explained/:中文版:https://www.jianshu.com/p/ ...

  5. Javascript开发技巧(JS中的变量、运算符、分支结构、循环结构)

    一.Js简介和入门 继续跟进JS开发的相关教程. <!-- [使用JS的三种方式] 1.HTML标签中内嵌JS(不提倡使用): 示例:<button onclick="javas ...

  6. 对NumPy中dot()函数的理解

    今天学习到numpy基本的运算方法,遇到了一个让我比较难理解的问题.就是dot函数是如何对矩阵进行运算的. 一.dot()的使用 参考文档:https://docs.scipy.org/doc/num ...

  7. numpy中的convolve的理解

    https://blog.csdn.net/u011599639/article/details/76254442 函数 numpy.convolve(a, v, mode=‘full’),这是num ...

  8. [开发技巧]·Python极简实现滑动平均滤波(基于Numpy.convolve)

    [开发技巧]·Python极简实现滑动平均滤波(基于Numpy.convolve) ​ 1.滑动平均概念 滑动平均滤波法(又称递推平均滤波法),时把连续取N个采样值看成一个队列 ,队列的长度固定为N ...

  9. [开发技巧]·pandas如何保存numpy元素

    [开发技巧]·pandas如何保存numpy元素 ​ 1.问题描述 在开发的过程中遇到一个问题,就是需要把numpy作为pandas的一个元素进行保存,注意不是作为一列元素.但是实践的过程中却不顺利, ...

随机推荐

  1. MFC中List box的用法

    首先在头文件中创建对象,CSGrid m_proViewList;//创建表头#pragma region 建立grid表的标题 m_proViewList.AppendColumn(_T(" ...

  2. bzoj4904 [Ctsc2017]最长上升子序列

    我们发现他让求的东西很奇怪,于是通过某D开头定理,我们转化为前m位的序列用k个不上升子序列最多能覆盖多少.数据范围小的时候可以网络流做,但是这道题显然不支持网络流的复杂度.然后有一个奇怪的东西叫杨氏矩 ...

  3. CentOS7 编译安装Nginx+php并配置php-fpm模块

    1.编译安装PHP7.2.0 去官网下载安装包:http://php.net/downloads.php ,完成之后,上传至服务器,并释放压缩包 .tar.gz cd php- 因为我们需要编译安装, ...

  4. 异步处理,Event Souring,事务补偿,实现最终一致性和服务的弹性和批处理

    这段时间一直学习极客时间皓哥的分布式架构,关于异步处理有一些感想用sketch做了一个图,展示上直观一些,和大家交流下

  5. Mendeley使用小技巧

    合并重复论文 在导入论文时,可能出现新导入的一篇论文是自己之前看过的,但是可能因为某些原因,如来源不是同一个网址,arxiv 和 ICCV,两篇相同内容的文献同时存在. Mendeley 提供一个方法 ...

  6. HTTP 视频怎么在 MIP 页面中使用?

    在 MIP 中,一些资源的使用需要支持 HTTPS,视频就是其中一种.但目前大部分站点的视频资源都还是 HTTP 的资源,无法在百度 MIP 搜索结果中直接使用, mip-video 视频组件针对 H ...

  7. js十大排序算法

    排序算法说明: (1)对于评述算法优劣术语的说明 稳定:如果a原本在b前面,而a=b,排序之后a仍然在b的前面:不稳定:如果a原本在b的前面,而a=b,排序之后a可能会出现在b的后面: 内排序:所有排 ...

  8. MySQL 复制 - 性能与扩展性的基石 1:概述及其原理

    1. 复制概述 MySQL 内置的复制功能是构建基于 MySQL 的大规模.高性能应用的基础,复制解决的基本问题是让一台服务器的数据与其他服务器保持同步. 接下来,我们将从复制概述及原理.复制的配置. ...

  9. Vue.js-08:第八章 - 组件的基础知识

    一.前言 在之前的学习中,我们对于 Vue 的一些基础语法进行了简单的了解,通过之前的代码可以清晰的看出,我们在使用 Vue 的整个过程,最终都是在对 Vue 实例进行的一系列操作. 这里就会引出一个 ...

  10. python爬虫踩坑教程

    我们的目标是爬取下面这个个网址上的2010~2018年的数据 http://stockdata.stock.hexun.com/zrbg/Plate.aspx?date=2015-12-31 获取我们 ...