logistic分类
对Logistic回归模型,个人做的一些总结:
公式就不套用了,教材上面基本都有而且详细。logistic回归用图形化形式描述如下:
logistic回归是一种简单高效的分类模型,它不仅可以通过学习来预测样本的类别,还可以得到样本属于各个类别的概率信息。因此在机器学习中得到了及其广泛的应用。
同时,它还有比较与其他模型的一些优点:
(1)logistic回归模型是线性模型,线性模型的优势是稳定性强,求解简单。但通常情况下,线性回归拟合得到的输出范围是不确定的,可以从负无穷至正无穷的区间范围内,输出的“不确定性”给分类问题提出了很大的挑战。logistic回归模型汲取了一般线性模型的优点,同时由于增加了Sigmoid函数,因此将输出范围限定在了0-1区间,而最终的输出可以看作是输入的条件概率分布。因此具有很好的实用性和可解释性。
(2)模型求导方便,使用简单的求导法则即可完成模型的求导,因此很多教材/教程都将该模型作为了入门学习的模型,受众广大/使用简单。相比于神经网络/SVM等模型,对于应用者来说是拿来就可以用的起的模型。
(3)模型是基于统计学的,在二分类情况下,假设样本服从伯努利分布后最大化极大似然函数进行推导的结果,这一部分可以参考斯坦福大学的资料,因此是具备足够理论支撑的模型。
(4)同样是计算过程简单,对于现在互联网行业中轻则百万千万的样本量的输入来说,使用起来是低成本的,同时迭代起来也快。
(5)对于小样本量来说,logistic模型训练参数的个数与输入维数是基本一致的,在前期进过降维和特征选择之后,输入的特征并不会太多,因此需要训练的参数个数相比其他模型来说相对较少,过拟合的程度相对还好。
(6)处理多分类问题,可以使用one to all的方法训练多个分类器,在神经网络处理多分类问题时,最终输出结果通常会使用softmax函数,可以看作是logistic模型的广义推广。
欢迎同行指正和补充。
logistic分类的更多相关文章
- 深度学习笔记(一):logistic分类【转】
本文转载自:https://blog.csdn.net/u014595019/article/details/52554582 这个系列主要记录我在学习各个深度学习算法时候的笔记,因为之前已经学过大概 ...
- 线性模型-线性回归、Logistic分类
线性模型是机器学习中最简单的,最基础的模型结果,常常被应用于分类.回归等学习任务中. 回归和分类区别: 回归:预测值是一个连续的实数: 分类:预测值是离散的类别数据. 1. 线性模型做回归任务 ...
- 多分类-- ROC曲线
本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明.如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.c ...
- logistic回归学习
logistic回归是一种分类方法,用于两分类的问题,其基本思想为: 寻找合适的假设函数,即分类函数,用来预测输入数据的结果: 构造损失函数,用来表示预测的输出结果与训练数据中实际类别之间的偏差: 最 ...
- 『科学计算』通过代码理解SoftMax多分类
SoftMax实际上是Logistic的推广,当分类数为2的时候会退化为Logistic分类 其计算公式和损失函数如下, 梯度如下, 1{条件} 表示True为1,False为0,在下图中亦即对于每个 ...
- 多分类下的ROC曲线和AUC
本文主要介绍一下多分类下的ROC曲线绘制和AUC计算,并以鸢尾花数据为例,简单用python进行一下说明.如果对ROC和AUC二分类下的概念不是很了解,可以先参考下这篇文章:http://blog.c ...
- 机器学习实战之Logistic回归
Logistic回归一.概述 1. Logistic Regression 1.1 线性回归 1.2 Sigmoid函数 1.3 逻辑回归 1.4 LR 与线性回归的区别 2. LR的损失函数 3. ...
- 数据分析logistic回归与时间序列
logistics回归 1.影响关系研究是所有研究中最为常见的. 2.当y是定量数据时,线性回归可以用来分析影响关系. 3.如果现在想对某件事情发生的概率进行预估,比如一件衣服的是否有人想购买? 这里 ...
- (六) 6.1 Neurons Networks Representation
面对复杂的非线性可分的样本是,使用浅层分类器如Logistic等需要对样本进行复杂的映射,使得样本在映射后的空间是线性可分的,但在原始空间,分类边界可能是复杂的曲线.比如下图的样本只是在2维情形下的示 ...
随机推荐
- Centos MySQL数据库迁移详细步骤
其实迁移数据库,一般用sql文件就行,把A服务器数据库的表结构和数据等等导出,然后导入到B服务器数据库, 但是这次数据文件过大,大约有40个G,使用命令行导入,效果不是很好,经常在执行过程中报错.卡死 ...
- APP开发外包时常见的错误
时代在发展,科技在进步,很多企业都想要开发出属于自己的一款APP.然而,不是每个企业都有开发团队或是专门雇一个技术人员来做的,有一个好方法就是把开发APP的工作外包出去,找一个比较好的外包公司根据自己 ...
- java中的数组概念
数组的定义形式: 动态初始化方式: 1.声明并开辟数组 String str[]=new String[3];//3表示数组的长度 2.分布完成 String str[]=null; str=new ...
- webpack模块化管理和打包工具
Webpack简介 webpack是当下最热门的前端资源模块化管理和打包工具.它可以将许多松散的模块按照依赖和规则打包成符合生产环境部署的前端资源.还可以将按需加载的模块进行代码分隔,等到实际 需要的 ...
- Shell编程-项目部署(一)
由于实际工作中经常用到需要部署项目,比较麻烦,今天记录下如何利用shell脚本完成自动部署的工作,毕竟不是专业的运维出身,写的不好,还请勿喷_^o^_ 今天以部署Django项目为演示,进行部署项目, ...
- Redis常用命令--SortedSet
SortedSet是一个类似于Set的集合数据类型,里面的每个字符串元素都关联到一个score(整数或浮点数),并且总是通过score来进行排序着. 并且可以取得一定范围内的元素. 在Redis中大概 ...
- [SDOI2008]Sue的小球
题目描述 Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船.然而,Sue的目标并不是当一个海盗,而是要收集空中漂浮的彩蛋,Sue有一 ...
- 4455[Zjoi2016]小星星 容斥+dp
4455: [Zjoi2016]小星星 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 527 Solved: 317[Submit][Status] ...
- 智能优化算法对TSP问题的求解研究
要求: TSP 算法(Traveling Salesman Problem)是指给定 n 个城市和各个城市之间的距离,要 求确定一条经过各个城市当且仅当一次的最短路径,它是一种典型的优化组合问题,其最 ...
- 二叉树的基本操作(含Huffman树)
大二时候写的烂代码,翻出来复习复习(o(╯□╰)o). 代码: #include <stdio.h> #include <stdlib.h> #define Max_Size ...