BZOJ 1171: 大sz的游戏
ZJOI讲课的题目,数据结构什么的还是很友好的说
首先我们发现题目中提到的距离\(\le L\)的东西显然可以用单调队列维护
但是暴力搞去不掉区间并的限制,那么我们考虑从区间并入手
对于这种问题的套路有一个就是线段树维护一个区间的最优解,然后计算完一个点的答案之后直接在线段树上更新即可
所以我们有了一个很naive的思路——线段树套单调队列,但随便一想时空复杂度都是\(O(n^2)\)的
让我们想一下复杂度变大的原因是什么,其实就是pushdown
带来的大量空间浪费
我们再仔细观察依稀这个问题的性质,发现其可以标记永久化,那么就很舒服了,时空复杂度都达到了优秀的\(O(n\log\ n)\)
然后像我这样naive的人就写出了这样的巨慢CODE
#include<cstdio>
#include<cctype>
#include<deque>
#include<algorithm>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=250005,INF=2e9;
int n,m,rst[N<<1],L[N],R[N],ans[N],dis[N],cnt,ret;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
char Fin[S],Fout[S],*A,*B; int Ftop,pt[15];
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
Tp inline void write(T x)
{
if (!x) return (void)(pc('0'),pc('\n')); if (x<0) x=-x,pc('-'); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
}F;
inline int find(CI x)
{
return lower_bound(rst+1,rst+cnt+1,x)-rst;
}
class Segment_Tree
{
private:
deque <int> dq[N<<3];
public:
#define TN CI now=1,CI l=1,CI r=cnt
#define O beg,end,pos
inline void build(TN)
{
dq[now].push_back(1); if (l==r) return; int mid=l+r>>1;
build(now<<1,l,mid); build(now<<1|1,mid+1,r);
}
inline void insert(CI beg,CI end,CI pos,TN)
{
while (!dq[now].empty()&&ans[pos]<ans[dq[now].back()]) dq[now].pop_back();
dq[now].push_back(pos); if (l==r) return; int mid=l+r>>1;
if (beg<=mid) insert(O,now<<1,l,mid); if (end>mid) insert(O,now<<1|1,mid+1,r);
}
inline void getpos(CI beg,CI end,CI pos,TN)
{
if (beg<=l&&r<=end)
{
while (!dq[now].empty()&&dis[pos]-dis[dq[now].front()]>m) dq[now].pop_front();
if (!dq[now].empty()&&(!~ret||ans[dq[now].front()]<ans[ret])) ret=dq[now].front(); return;
}
int mid=l+r>>1; if (beg<=mid) getpos(O,now<<1,l,mid); if (end>mid) getpos(O,now<<1|1,mid+1,r);
}
#undef TN
#undef O
}SEG;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i; for (F.read(n),F.read(m),i=2;i<=n;++i)
F.read(L[i]),F.read(R[i]),rst[++cnt]=L[i],rst[++cnt]=R[i],F.read(dis[i]);
sort(rst+1,rst+cnt+1); cnt=unique(rst+1,rst+cnt+1)-rst-1;
for (i=2;i<=n;++i) L[i]=find(L[i]),R[i]=find(R[i]);
for (SEG.build(),i=2;i<=n;++i)
{
ret=-1; SEG.getpos(L[i],R[i],i); if (!~ret) ans[i]=INF;
else ans[i]=ans[ret]+1; SEG.insert(L[i],R[i],i);
}
for (i=2;i<=n;++i) F.write(ans[i]!=INF?ans[i]:-1); return F.Fend(),0;
}
没办法,我们发现这个程序慢有两点:
deque
巨慢无比,而且内存占用极大- 没有维护每个节点的答案,这样查询的时候复杂度极高
然后解决方案也很简单:
- 把
deque
换成list
(快如闪电) - 单独写删除操作,并且记下每个点的答案
然后就可以顺利地通过此题了QWQ
#include<cstdio>
#include<cctype>
#include<list>
#include<algorithm>
#define RI register int
#define CI const int&
#define Tp template <typename T>
using namespace std;
const int N=250005,INF=1e9;
int n,m,rst[N<<1],q[N],L[N],R[N],dis[N],ans[N],cnt,pos;
class FileInputOutput
{
private:
static const int S=1<<21;
#define tc() (A==B&&(B=(A=Fin)+fread(Fin,1,S,stdin),A==B)?EOF:*A++)
#define pc(ch) (Ftop<S?Fout[Ftop++]=ch:(fwrite(Fout,1,S,stdout),Fout[(Ftop=0)++]=ch))
char Fin[S],Fout[S],*A,*B; int Ftop,pt[15];
public:
Tp inline void read(T& x)
{
x=0; char ch; while (!isdigit(ch=tc()));
while (x=(x<<3)+(x<<1)+(ch&15),isdigit(ch=tc()));
}
Tp inline void write(T x)
{
if (!x) return (void)(pc('0'),pc('\n')); if (x<0) x=-x,pc('-'); RI ptop=0;
while (x) pt[++ptop]=x%10,x/=10; while (ptop) pc(pt[ptop--]+48); pc('\n');
}
inline void Fend(void)
{
fwrite(Fout,1,Ftop,stdout);
}
#undef tc
#undef pc
}F;
inline int find(CI x)
{
return lower_bound(rst+1,rst+cnt+1,x)-rst;
}
class Segment_Tree
{
private:
list <int> dq[N<<3]; int val[N<<3];
inline void miner(int &x,CI y)
{
if (y<x) x=y;
}
inline int get(CI now)
{
if (dq[now].empty()) return INF; return ans[dq[now].front()];
}
inline void pushup(CI now,const bool& op)
{
val[now]=get(now); if (op) miner(val[now],val[now<<1]),miner(val[now],val[now<<1|1]);
}
public:
#define TN CI now=1,CI l=1,CI r=cnt
#define O beg,end,pos
inline void build(TN)
{
val[now]=INF; if (l==r) return; int mid=l+r>>1; build(now<<1,l,mid); build(now<<1|1,mid+1,r);
}
inline void insert(CI beg,CI end,CI pos,TN)
{
if (beg<=l&&r<=end)
{
while (!dq[now].empty()&&ans[pos]<=ans[dq[now].back()])
dq[now].pop_back(); dq[now].push_back(pos); return pushup(now,l!=r);
}
int mid=l+r>>1; if (beg<=mid) insert(O,now<<1,l,mid);
if (end>mid) insert(O,now<<1|1,mid+1,r); pushup(now,l!=r);
}
inline void remove(CI beg,CI end,CI pos,TN)
{
if (beg<=l&&r<=end)
{
while (!dq[now].empty()&&dq[now].front()<=pos)
dq[now].pop_front(); return pushup(now,l!=r);
}
int mid=l+r>>1; if (beg<=mid) remove(O,now<<1,l,mid);
if (end>mid) remove(O,now<<1|1,mid+1,r); pushup(now,l!=r);
}
inline int query(CI beg,CI end,TN)
{
if (beg<=l&&r<=end) return val[now]; int mid=l+r>>1,ret=get(now);
if (beg<=mid) miner(ret,query(beg,end,now<<1,l,mid));
if (end>mid) miner(ret,query(beg,end,now<<1|1,mid+1,r)); return ret;
}
#undef TN
#undef O
}SEG;
int main()
{
//freopen("CODE.in","r",stdin); freopen("CODE.out","w",stdout);
RI i,H=1,T=1; for (F.read(n),F.read(m),i=2;i<=n;++i)
F.read(L[i]),F.read(R[i]),rst[++cnt]=L[i],rst[++cnt]=R[i],F.read(dis[i]);
sort(rst+1,rst+cnt+1); cnt=unique(rst+1,rst+cnt+1)-rst-1;
for (i=2;i<=n;++i) L[i]=find(L[i]),R[i]=find(R[i]);
for (SEG.build(),SEG.insert(L[1]=q[1]=1,R[1]=cnt,1),i=2;i<=n;++i)
{
while (H<=T&&dis[i]-dis[q[H]]>m) pos=q[H++],SEG.remove(L[pos],R[pos],pos);
ans[i]=SEG.query(L[i],R[i]); if (ans[i]!=INF)
F.write(++ans[i]),SEG.insert(L[i],R[i],i),q[++T]=i; else F.write(-1);
}
return F.Fend(),0;
}
BZOJ 1171: 大sz的游戏的更多相关文章
- bzoj 1171 大sz的游戏& 2892 强袭作战 (线段树+单调队列+永久性flag)
大sz的游戏 Time Limit: 50 Sec Memory Limit: 357 MBSubmit: 536 Solved: 143[Submit][Status][Discuss] Des ...
- 【BZOJ-2892&1171】强袭作战&大sz的游戏 权值线段树+单调队列+标记永久化+DP
2892: 强袭作战 Time Limit: 50 Sec Memory Limit: 512 MBSubmit: 45 Solved: 30[Submit][Status][Discuss] D ...
- [BZOJ1171][BZOJ2892]大sz的游戏
[BZOJ1171][BZOJ2892]大sz的游戏 试题描述 大sz最近在玩一个由星球大战改编的游戏.话说绝地武士当前共控制了N个星球.但是,西斯正在暗处悄悄地准备他们的复仇计划.绝地评议会也感觉到 ...
- BZOJ1171: 大sz的游戏&BZOJ2892: 强袭作战
Description 大sz最近在玩一个由星球大战改编的游戏.话说绝地武士当前共控制了N个星球.但是,西斯正在暗处悄悄地准备他们的复仇计划.绝地评议会也感觉到了这件事.于是,准备加派绝地武士到各星球 ...
- 【BZOJ1171】大sz的游戏(线段树+单调队列)
点此看题面 大致题意: 有\(n\)个点,两点间最大通讯距离为\(L\).已知除\(1\)号点外第\(i\)个点能够发出和接收的信号区间\([l_i,r_i]\)以及到\(1\)号点的距离\(dis_ ...
- BZOJ1171 : 大sz的游戏
f[i]=min(f[j])+1,线段j与线段i有交,且l[i]-l[j]<=L. 线段j与线段i有交等价于y[j]>=x[i],x[j]<=y[i]. 因为l[i]递增,所以可以维 ...
- BZOJ 3684 大朋友和多叉树
BZOJ 3684 大朋友和多叉树 Description 我们的大朋友很喜欢计算机科学,而且尤其喜欢多叉树.对于一棵带有正整数点权的有根多叉树,如果它满足这样的性质,我们的大朋友就会将其称作神犇的: ...
- BZOJ 1444:[JSOI2009]有趣的游戏
BZOJ 1444:[JSOI2009]有趣的游戏 题目链接 首先我们建出Trie图,然后高斯消元. 我们设\(f_i\)表示经过第\(i\)个点的期望次数: \[ f_x=\sum i\cdot p ...
- [BZOJ 3652]大新闻
[BZOJ 3652] 大新闻 题意 随机从 \([0,n)\) 中选取一个整数 \(x\), 并从 \([0,n)\) 中再选取一个整数 \(y\). 有 \(p\) 的概率选取一个能令 \(x\o ...
随机推荐
- Spring的PropertyPlaceholderConfigurer强制使用默认值的坑
1.问题 dubbo client配置: <dubbo:reference id="channelCustomerClient" interface="com.gt ...
- php原生代码实现explode函数功能
在开始代码前要先介绍几个PHP函数: explode() 把字符串打散成数组 strpos() 返回字符串在另一个字符串第一次出现的位置(对大小写敏感) strstr() 查找 ...
- shell if条件判断中:双中括号与单中括号的区别
电脑重装了系统,登录虚拟机的shell脚本需重写,在为编写的脚本命名时发现存在同名脚本,才想起来是连接公司服务器的登录脚本,不想写俩脚本,怕记混了,那就整合一下.代码如下: #!/bin/bash#z ...
- pandas列合并为一行
将dataframe利用pandas列合并为一行,类似于sql的GROUP_CONCAT函数.例如如下dataframe id_part pred pred_class v_id 0 d 0 0.12 ...
- 与其争论java和.net的差别,还不如多想点用编程技术挣钱的方式
年前和最近,我发现在博客园和其它地方,有不少争论java和.net哪个好的文章,其实这是种好现象.虽然到了架构层面,技术是通用的,但兼听则明,而且技多不压身,多种挣钱的方式总不会错. 本人最近主攻Ja ...
- Golang之变量去哪儿
目录 什么是逃逸分析 为什么要逃逸分析 逃逸分析是怎么完成的 逃逸分析实例 总结 参考资料 写过C/C++的同学都知道,调用著名的malloc和new函数可以在堆上分配一块内存,这块内存的使用和销毁的 ...
- java并发多线程显式锁Condition条件简介分析与监视器 多线程下篇(四)
Lock接口提供了方法Condition newCondition();用于获取对应锁的条件,可以在这个条件对象上调用监视器方法 可以理解为,原本借助于synchronized关键字以及锁对象,配备了 ...
- Java使用Aspose组件进行多文档间的转换操作
首先,祝大家新年快乐,2019诸事顺利,很久没有更新博客,今天要给大家说的是 ”Aspose“ 组件,作为2019年第一篇博客,希望大家能够多多支持,2019年要继续加油. 什么是Aspose? As ...
- nginx优化之配置文件优化一常用参数
#定义nginx运行的用户和用户组 user www www; #启动进程,通常设置成和cpu的数量相等 worker_processes 8 ; #为每个进程分配CPU,上面京8个进程分配到 ...
- JFreeChart画图+jsp页面显示实现统计图
1 开发环境: 1.eclipse(可替换) 2.jfreechart-1.0.19 2 说明: (1) source目录:为 jfreechart的源码目录:不会的主要看这里.因为他的文档是收费的. ...