转 Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数
本文只讲解视觉层(Vision Layers)的参数,视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层。
1、Convolution层:
就是卷积层,是卷积神经网络(CNN)的核心层。
层类型:Convolution
lr_mult: 学习率的系数,最终的学习率是这个数乘以solver.prototxt配置文件中的base_lr。如果有两个lr_mult, 则第一个表示权值的学习率,第二个表示偏置项的学习率。一般偏置项的学习率是权值学习率的两倍。
在后面的convolution_param中,我们可以设定卷积层的特有参数。
必须设置的参数:
num_output: 卷积核(filter)的个数
kernel_size: 卷积核的大小。如果卷积核的长和宽不等,需要用kernel_h和kernel_w分别设定
其它参数:
stride: 卷积核的步长,默认为1。也可以用stride_h和stride_w来设置。
pad: 扩充边缘,默认为0,不扩充。 扩充的时候是左右、上下对称的,比如卷积核的大小为5*5,那么pad设置为2,则四个边缘都扩充2个像素,即宽度和高度都扩充了4个像素,这样卷积运算之后的特征图就不会变小。也可以通过pad_h和pad_w来分别设定。

layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
param {
lr_mult: 1
}
param {
lr_mult: 2
}
convolution_param {
num_output: 20
kernel_size: 5
stride: 1
weight_filler {
type: "xavier"
}
bias_filler {
type: "constant"
}
}
}


layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}

pooling层的运算方法基本是和卷积层是一样的。
,得到归一化后的输出
layers {
name: "norm1"
type: LRN
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}

4、im2col层
如果对matlab比较熟悉的话,就应该知道im2col是什么意思。它先将一个大矩阵,重叠地划分为多个子矩阵,对每个子矩阵序列化成向量,最后得到另外一个矩阵。
看一看图就知道了:

在caffe中,卷积运算就是先对数据进行im2col操作,再进行内积运算(inner product)。这样做,比原始的卷积操作速度更快。
看看两种卷积操作的异同:

转 Caffe学习系列(3):视觉层(Vision Layers)及参数的更多相关文章
- [转] caffe视觉层Vision Layers 及参数
视觉层包括Convolution, Pooling, Local Response Normalization (LRN), im2col等层. 1.Convolution层: 就是卷积层,是卷积神经 ...
- Caffe学习系列(3):视觉层(Vision Layers)及参数
所有的层都具有的参数,如name, type, bottom, top和transform_param请参看我的前一篇文章:Caffe学习系列(2):数据层及参数 本文只讲解视觉层(Vision La ...
- Caffe 学习系列
学习列表: Google protocol buffer在windows下的编译 caffe windows 学习第一步:编译和安装(vs2012+win 64) caffe windows学习:第一 ...
- Caffe学习系列(23):如何将别人训练好的model用到自己的数据上
caffe团队用imagenet图片进行训练,迭代30多万次,训练出来一个model.这个model将图片分为1000类,应该是目前为止最好的图片分类model了. 假设我现在有一些自己的图片想进行分 ...
- Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- 转 Caffe学习系列(12):训练和测试自己的图片
学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测试模型的整个流程. 一.准备数据 有条件的同学,可以去 ...
- Caffe学习系列——工具篇:神经网络模型结构可视化
Caffe学习系列——工具篇:神经网络模型结构可视化 在Caffe中,目前有两种可视化prototxt格式网络结构的方法: 使用Netscope在线可视化 使用Caffe提供的draw_net.py ...
- Caffe学习系列(12):训练和测试自己的图片--linux平台
Caffe学习系列(12):训练和测试自己的图片 学习caffe的目的,不是简单的做几个练习,最终还是要用到自己的实际项目或科研中.因此,本文介绍一下,从自己的原始图片到lmdb数据,再到训练和测 ...
- Caffe学习系列(22):caffe图形化操作工具digits运行实例
上接:Caffe学习系列(21):caffe图形化操作工具digits的安装与运行 经过前面的操作,我们就把数据准备好了. 一.训练一个model 右击右边Models模块的” Images" ...
随机推荐
- javascript:将URL的参数列表解析为一个对象
<!doctype html> <html> <head> <meta charset="utf-8"> <title> ...
- centos7添加图像化桌面并设置中文
我前面是使用的centos6.最近才最小化安装了一个centos7.4(最小化安装有很多命令都没有,所以不建议这样干).完了装了图形化界面和设置中文,感觉和centos6有些区别,所以记录一下过程. ...
- LINUX改变文件大小
body, table{font-family: 微软雅黑; font-size: 10pt} table{border-collapse: collapse; border: solid gray; ...
- JDBC(二)
三层架构的一些基本报结构如下: domain包:下面是一些实体bean,属性为private,提供属性相对应的set和get方法.一般对应于数据库中的一张数据表,属性对应于数据表中的列. dao包,数 ...
- BZOJ 2754: [SCOI2012]喵星球上的点名 [后缀数组+暴力]
2754: [SCOI2012]喵星球上的点名 Time Limit: 20 Sec Memory Limit: 128 MBSubmit: 1906 Solved: 839[Submit][St ...
- Netty(一):入门篇
匠心零度 转载请注明原创出处,谢谢! 说在前面 上篇文章对Netty进行了初探:Netty初探,主要介绍了下我们为什么需要学习netty.netty介绍等:本篇文章接着上篇文章的内容.本篇为了方便大家 ...
- 听说你开发.NET还在用VS,小哥哥给你推荐全平台的Rider
本文地址:http://www.cnblogs.com/likeli/p/8461010.html 前言 .NET平台的开发一直都只能使用Visual Studio来开发,自从dotnet core ...
- python的面向对象和面向过程
一.面向对象和面向过程的区别: a.面向过程: 1)根据业务逻辑从上到下写代码 2)开发思路是将数据和函数按照执行的逻辑顺序组织在一起 3)分开考虑数据与函数 定义性文字: 面向对象编程(Object ...
- HTTP入门
请求报文图解: 请求报文 图片 响应报文图解: 响应报文
- Excel地图插件(ExcelMaps)
1 软件概述 一款基于Excel表格进行地理数据挖掘.坐标转换.地图绘制.地图图表等操作的工具类应用软件.具有易用.高效.稳定的特点,能够满足地理数据应用及处理的基本需求,也可提供个性化定制开发服务. ...