版权声明:本文为博主原创文章,欢迎转载,并请注明出处。联系方式:460356155@qq.com

前面通过数据增强,ResNet-34残差网络识别CIFAR10,准确率达到了92.6。

这里对训练过程增加2个处理:

  1、训练数据集做进一步处理:对图片随机加正方形马赛克。

  2、每50个epoch,学习率降低0.1倍。

代码具体修改如下:

自定义transform:

 class Cutout(object):
def __init__(self, hole_size):
# 正方形马赛克的边长,像素为单位
self.hole_size = hole_size def __call__(self, img):
return cutout(img, self.hole_size) def cutout(img, hole_size):
y = np.random.randint(32)
x = np.random.randint(32) half_size = hole_size // 2 x1 = np.clip(x - half_size, 0, 32)
x2 = np.clip(x + half_size, 0, 32)
y1 = np.clip(y - half_size, 0, 32)
y2 = np.clip(y + half_size, 0, 32) imgnp = np.array(img) imgnp[y1:y2, x1:x2] = 0
img = Image.fromarray(imgnp.astype('uint8')).convert('RGB')
return img

数据集处理修改:

     transform_train = transforms.Compose([
# 对原始32*32图像四周各填充4个0像素(40*40),然后随机裁剪成32*32
transforms.RandomCrop(32, padding=4), # 随机马赛克,大小为6*6
Cutout(6), # 按0.5的概率水平翻转图片
transforms.RandomHorizontalFlip(), transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) transform_test = tv.transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])]) # 定义数据集
train_data = tv.datasets.CIFAR10(root=ROOT, train=True, download=True, transform=transform_train)
test_data = tv.datasets.CIFAR10(root=ROOT, train=False, download=False, transform=transform_test)

训练过程中调整学习率:

     for epoch in range(1, args.epochs + 1):
if epoch % 50 == 0:
lr = args.lr * (0.1 ** (epoch // 50)) for params in optimizer.param_groups:
params['lr'] = lr net_train(net, train_load, optimizer, epoch, args.log_interval) # 每个epoch结束后用测试集检查识别准确度
net_test(net, test_load, epoch)

运行结果如下:

Files already downloaded and verified

ResNet34(

(first): Sequential(

(0): Conv2d(3, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(2): ReLU(inplace)

(3): MaxPool2d(kernel_size=3, stride=1, padding=1, dilation=1, ceil_mode=False)

)

(layer1): Sequential(

(0): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(1): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer2): Sequential(

(0): ResBlock(

(conv1): Conv2d(64, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(64, 128, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(3): ResBlock(

(conv1): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer3): Sequential(

(0): ResBlock(

(conv1): Conv2d(128, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(128, 256, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(3): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(4): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(5): ResBlock(

(conv1): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(layer4): Sequential(

(0): ResBlock(

(conv1): Conv2d(256, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(downsample): Sequential(

(0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))

(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(1): ResBlock(

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

(2): ResBlock(

(conv1): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

(relu): ReLU(inplace)

(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))

(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)

)

)

(avg_pool): AvgPool2d(kernel_size=4, stride=4, padding=0)

(fc): Linear(in_features=512, out_features=10, bias=True)

)

one epoch spend: 0:01:11.775634

EPOCH:1, ACC:44.28

one epoch spend:
0:01:12.244757

EPOCH:2, ACC:54.46

one epoch spend:
0:01:12.360205

EPOCH:3, ACC:56.84

............

one epoch spend: 0:01:19.172188

EPOCH:198, ACC:94.2

one epoch spend:
0:01:19.213334

EPOCH:199, ACC:94.19

one epoch spend:
0:01:19.222612

EPOCH:200, ACC:94.21

CIFAR10 pytorch
ResNet34 Train: EPOCH:200, BATCH_SZ:128, LR:0.1, ACC:94.33

train spend time:
4:21:32.548834

运行200个迭代,每个迭代耗时80秒,准确率提升了1.73%,达到94.33%。准确率变化曲线如下:

pytorch识别CIFAR10:训练ResNet-34(自定义transform,动态调整学习率,准确率提升到94.33%)的更多相关文章

  1. pytorch识别CIFAR10:训练ResNet-34(准确率80%)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com CNN的层数越多,能够提取到的特征越丰富,但是简单地增加卷积层数,训练时会导致梯度弥散或梯度爆炸. 何 ...

  2. pytorch识别CIFAR10:训练ResNet-34(数据增强,准确率提升到92.6%)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过减小卷积核训练准确率提升到85%. 这里对训练数据集做数据 ...

  3. pytorch识别CIFAR10:训练ResNet-34(微调网络,准确率提升到85%)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 在前一篇中的ResNet-34残差网络,经过训练准确率只达到80%. 这里对网络做点小修改,在最开始的 ...

  4. pytorch 动态调整学习率 重点

    深度炼丹如同炖排骨一般,需要先大火全局加热,紧接着中火炖出营养,最后转小火收汁.本文给出炼丹中的 “火候控制器”-- 学习率的几种调节方法,框架基于 pytorch 1. 自定义根据 epoch 改变 ...

  5. 深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(二)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com AlexNet在2012年ImageNet图像分类任务竞赛中获得冠军.网络结构如下图所示: 对CIFA ...

  6. 深度学习识别CIFAR10:pytorch训练LeNet、AlexNet、VGG19实现及比较(三)

    版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com VGGNet在2014年ImageNet图像分类任务竞赛中有出色的表现.网络结构如下图所示: 同样的, ...

  7. PyTorch Tutorials 4 训练一个分类器

    %matplotlib inline 训练一个分类器 上一讲中已经看到如何去定义一个神经网络,计算损失值和更新网络的权重. 你现在可能在想下一步. 关于数据? 一般情况下处理图像.文本.音频和视频数据 ...

  8. Pytorch多GPU训练

    Pytorch多GPU训练 临近放假, 服务器上的GPU好多空闲, 博主顺便研究了一下如何用多卡同时训练 原理 多卡训练的基本过程 首先把模型加载到一个主设备 把模型只读复制到多个设备 把大的batc ...

  9. CNN+BLSTM+CTC的验证码识别从训练到部署

    项目地址:https://github.com/kerlomz/captcha_trainer 1. 前言 本项目适用于Python3.6,GPU>=NVIDIA GTX1050Ti,原mast ...

随机推荐

  1. 虎牙直播张波:掘金Nginx日志

    大家好!我是来自虎牙直播技术保障部的张波.今天主要会从数据挖掘层面跟大家探讨一下 Nginx 的价值.OpenResty 在虎牙的应用场景主要 WAF 和流控等方面,我今天主要分享的是“ Nginx ...

  2. 为什么有那么多人愿意喝"鸡汤"?

    什么是心灵鸡汤 心灵鸡汤,就是“充满知识与感情的话语”,柔软.温暖,充满正能量.心灵鸡汤是一种安慰剂,可以怡情,作阅读快餐:亦可移情,挫折.抑郁时,疗效直逼“打鸡血”.这也是“心灵鸡汤”风靡不衰的原因 ...

  3. 微信公众号开发C#系列-8、自定义菜单及菜单响应事件的处理

    1.概述 自定义菜单能够帮助公众号丰富界面,让用户更好更快地理解公众号的功能.菜单分为默认菜单与个性化菜单.个性化菜单接口是为了帮助公众号实现灵活的业务运营,开发者可以通过该接口,让公众号的不同用户群 ...

  4. java锁与监视器概念 为什么wait、notify、notifyAll定义在Object中 多线程中篇(九)

    在Java中,与线程通信相关的几个方法,是定义在Object中的,大家都知道Object是Java中所有类的超类 在Java中,所有的类都是Object,借助于一个统一的形式Object,显然在有些处 ...

  5. springcloud情操陶冶-bootstrapContext(一)

    基于前文对springcloud的引导,本文则从源码角度查阅下cloud的context板块的运行逻辑 前言 springcloud是基于springboot开发的,所以读者在阅读此文前最好已经了解了 ...

  6. 在CentOS上安装owncloud企业私有云过程

    ## ownclud是什么? ## >ownCloud 是一个开源免费专业的私有云存储项目,它能帮你快速在个人电脑或服务器上架设一套专属的私有云文件同步网盘,可以像 Dropbox 那样实现文件 ...

  7. C#/VB.NET设置Excel表格背景色

    在查看很多有复杂的数据的表格时,为了能够快速地找到所需要的数据组时,往往需要对该数据组进行分类,一个简单快速的方法就是对数据组所在的单元格填充背景颜色,这样就使得我们在阅读文件时能够直观的看到数据分类 ...

  8. Python二级-----------程序冲刺4

    1. 根据输入正整数 n,作为财务数据,输出一个宽度为 20 字符,n 右对齐显示,带千位分隔符的效果,使用减号字符“-”填充.如果输入正整数超过 20 位,则按照真实长度输出.提示代码如下:‪‬‪‬ ...

  9. .net 笔试面试总结(2)

    在.net 中类(class) 与结构(Struct)的异同. Class 可以被实例化,属于引用类型,是分配在内存的堆上的.类是引用传递的. Struct 属于值类型,是分配在内存的栈上的.结构体是 ...

  10. 20190329-盒尺寸、boder-

    目录 1.盒尺寸四家庭 width:宽度 height:高度 margin:外边距 padding:内边距 盒模型: 2.border边框 border简写:border-position(top | ...