题意:$\sum_{d|n}f(d)=n^{2}-3n+2$,求$\sum_{i=1}^{n}f(i)\mod 10^{9}+7$ , $n \leqslant 10^{9}$ $\left( T \leqslant 500\right)$组数据,只有5组>$10^{6}$

题解:看了式子感觉像是反演,但是呢....

令$S(n)=\sum_{i=1}^{n}f(i)$

那么$S(n)=\sum_{i=1}^{n}\sum_{d|i}f(d)=\sum_{i=1}^{n}f(d)\lfloor\frac{n}{d}\rfloor=\sum_{d=1}^{n}\sum_{i=1}^{\lfloor\frac{n}{d}\rfloor} f(d)=\sum_{d=1}^{n}S(\lfloor\frac{n}{d}\rfloor)=\sum_{i=1}^{n}(i-1)*(i-2)$

所以$S(n)=\frac{n*(n-1)*(n-2)}{3}-\sum_{i=2}^{n}f(i)$

所以老套路,预处理$maxn^{\frac{2}{3}}$的S(i),这个可以直接算,总复杂度也是$O(n^{\frac{2}{3}})$

#include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<map>
#define MAXN 5000000
#define mod 1000000007
#define inv 333333336
#define ll long long
using namespace std;
inline ll read()
{
ll x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-') f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-''; ch=getchar();}
return x*f;
} int f[MAXN+];
map<int,ll> mp; ll calc(int x)
{
if(x<=MAXN)return f[x];
map<int,ll>::iterator it;
if((it=mp.find(x))!=mp.end())return it->second;
ll sum=1LL*x*(x-)%mod*(x-)%mod*inv%mod;
int last;
for(int i=;i<=x;i=last+)
{
last=x/(x/i);
sum-=1LL*(last-i+)*calc(x/i);
while(sum<)sum+=mod;
}
return (mp[x]=sum);
} int main()
{
for(int i=;i<=MAXN;i++)
f[i]=1LL*(i-)*(i-)%mod;
for(int i=;i<=MAXN;i++)
for(int j=i<<;j<=MAXN;j+=i)
f[j]=(f[j]-f[i]+mod)%mod;
// for(int i=1;i<=10;i++)cout<<f[i]<<endl;
for(int i=;i<=MAXN;i++) f[i]=(f[i]+f[i-])%mod;
for(int t=read();t;t--)
printf("%lld\n",calc(read()));
return ;
}

[hdu5608]function的更多相关文章

  1. 通过百度echarts实现数据图表展示功能

    现在我们在工作中,在开发中都会或多或少的用到图表统计数据显示给用户.通过图表可以很直观的,直接的将数据呈现出来.这里我就介绍说一下利用百度开源的echarts图表技术实现的具体功能. 1.对于不太理解 ...

  2. hdu5608:function

    $n^2-3n+2=\sum_{d|i}f(i)$,问$f(i)$前$n$项和. 方法一:直接切入! $S(n)=\sum_{i=1}^{n}f(i)=\sum_{i=1}^{n}(i^2-3i+2- ...

  3. jsp中出现onclick函数提示Cannot return from outside a function or method

    在使用Myeclipse10部署完项目后,原先不出错的项目,会有红色的叉叉,JSP页面会提示onclick函数错误 Cannot return from outside a function or m ...

  4. JavaScript function函数种类

    本篇主要介绍普通函数.匿名函数.闭包函数 目录 1. 普通函数:介绍普通函数的特性:同名覆盖.arguments对象.默认返回值等. 2. 匿名函数:介绍匿名函数的特性:变量匿名函数.无名称匿名函数. ...

  5. 在ubuntu16.10 PHP测试连接MySQL中出现Call to undefined function: mysql_connect()

    1.问题: 测试php7.0 链接mysql数据库的时候发生错误: Fatal error: Uncaught Error: Call to undefined function mysqli_con ...

  6. jquery中的$(document).ready(function() {});

    当文档载入时执行function函数里的代码, 这部分代码主要声明,页面加载后 "监听事件" 的方法.例如: $(document).ready( $("a") ...

  7. Function.prototype.toString 的使用技巧

    Function.prototype.toString这个原型方法可以帮助你获得函数的源代码, 比如: function hello ( msg ){ console.log("hello& ...

  8. 转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38

    转:ORA-15186: ASMLIB error function = [asm_open], error = [1], 2009-05-24 13:57:38http://space.itpub. ...

  9. [Xamarin] 透過Native Code呼叫 JavaScript function (转帖)

    今天我們來聊聊關於如何使用WebView 中的Javascript 來呼叫 Native Code 的部分 首先,你得先來看看這篇[Xamarin] 使用Webview 來做APP因為這篇文章至少講解 ...

随机推荐

  1. python自动发邮件

    from email.header import Header from email.mime.text import MIMEText from email.utils import parsead ...

  2. Beta冲刺Day5

    项目进展 李明皇 今天解决的进度 服务器端还未完善,所以无法进行联动调试.对页面样式和逻辑进行优化 明天安排 前后端联动调试 林翔 今天解决的进度 完成维护登录态,实现图片上传,微信开发工具上传图片不 ...

  3. 【作业】HansBug的前三次OO作业分析与小结

    OO课程目前已经进行了三次的作业,容我在本文中做一点微小的工作. 第一次作业 第一次作业由于难度不大,所以笔者程序实际上写的也比较随意一些.(点击就送指导书~) 类图 程序的大致结构如下: 代码分析 ...

  4. 解决java.lang.NoSuchMethodError:org.joda.time.DateTime.withTimeAtStartOfDay() Lorg/joda/time/DateTime

    问题:项目放在weblogic运行,报错 java.lang.NoSuchMethodError: org.joda.time.DateTime.withTimeAtStartOfDay()Lorg/ ...

  5. 原生JS封装时间运动函数

    /*讲时间运动之前先给大家复习一下运动函数 通常大家都会写运动框架,一个定时器(Timer),一个步长(step 就是每次运动的距离),一个当前位置(current)一个目标位置(target),然后 ...

  6. SpringCloud是否值得引入?

    中小型互联网公司微服务实践-经验和教训 http://xujin.org/sc/sc-zq/#more Spring Cloud在国内中小型公司能用起来吗?https://mp.weixin.qq.c ...

  7. GIT入门笔记(15)- 链接到私有GitLab仓库

    GitLab是利用 Ruby on Rails 一个开源的版本管理系统,实现一个自托管的Git项目仓库,可通过Web界面进行访问公开的或者私人项目.它拥有与Github类似的功能,能够浏览源代码,管理 ...

  8. Docker学习笔记 - Docker客户端和服务端

    学习内容: Docker客户端和服务端的通讯方式:client和自定义程序 Docker客户端和服务端的连接方式:socket 演示Docker客户端和服务端之间用remote-api通讯:nc   ...

  9. 【笔记】css 自定义select 元素的箭头样式

    原文链接:https://www.imooc.com/qadetail/187585?t=281881 最近项目需要自定义select 元素的样式,搜索了一下发现了通过设置select 元素 css ...

  10. ZooKeeper:win7上安装单机及伪分布式安装

    zookeeper是一个为分布式应用所设计的分布式的.开源的调度服务,它主要用来解决分布式应用中经常遇到的一些数据管理问题,简化分布式应用,协调及其管理的难度,提高性能的分布式服务. 本章的目的:如何 ...