链接:

https://codeforces.com/contest/1247/problem/C

题意:

Vasya will fancy any number as long as it is an integer power of two. Petya, on the other hand, is very conservative and only likes a single integer p (which may be positive, negative, or zero). To combine their tastes, they invented p-binary numbers of the form 2x+p, where x is a non-negative integer.

For example, some −9-binary ("minus nine" binary) numbers are: −8 (minus eight), 7 and 1015 (−8=20−9, 7=24−9, 1015=210−9).

The boys now use p-binary numbers to represent everything. They now face a problem: given a positive integer n, what's the smallest number of p-binary numbers (not necessarily distinct) they need to represent n as their sum? It may be possible that representation is impossible altogether. Help them solve this problem.

For example, if p=0 we can represent 7 as 20+21+22.

And if p=−9 we can represent 7 as one number (24−9).

Note that negative p-binary numbers are allowed to be in the sum (see the Notes section for an example).

思路:

枚举使用的个数,判断n-i*p能不能满足条件。

代码:

#include <bits/stdc++.h>
typedef long long LL;
using namespace std; LL n, p; int Cal(LL x)
{
int cnt = 0;
while (x)
{
if (x&1)
cnt++;
x >>= 1;
}
return cnt;
} int main()
{
ios::sync_with_stdio(false);
cin >> n >> p;
for (int i = 1;i <= 1e4;i++)
{
LL v = n-p*i;
if (v <= 0)
break;
int num = Cal(v);
if (num <= i && i <= v)
{
cout << i << endl;
return 0;
}
}
cout << -1 << endl; return 0;
}

Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) C. p-binary的更多相关文章

  1. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2)

    A - Forgetting Things 题意:给 \(a,b\) 两个数字的开头数字(1~9),求使得等式 \(a=b-1\) 成立的一组 \(a,b\) ,无解输出-1. 题解:很显然只有 \( ...

  2. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products

    链接: https://codeforces.com/contest/1247/problem/D 题意: You are given n positive integers a1,-,an, and ...

  3. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B2. TV Subscriptions (Hard Version)

    链接: https://codeforces.com/contest/1247/problem/B2 题意: The only difference between easy and hard ver ...

  4. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things

    链接: https://codeforces.com/contest/1247/problem/A 题意: Kolya is very absent-minded. Today his math te ...

  5. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) F. Tree Factory 构造题

    F. Tree Factory Bytelandian Tree Factory produces trees for all kinds of industrial applications. Yo ...

  6. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) E. Rock Is Push dp

    E. Rock Is Push You are at the top left cell (1,1) of an n×m labyrinth. Your goal is to get to the b ...

  7. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) B. TV Subscriptions 尺取法

    B2. TV Subscriptions (Hard Version) The only difference between easy and hard versions is constraint ...

  8. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) A. Forgetting Things 水题

    A. Forgetting Things Kolya is very absent-minded. Today his math teacher asked him to solve a simple ...

  9. Codeforces Round #596 (Div. 2, based on Technocup 2020 Elimination Round 2) D. Power Products 数学 暴力

    D. Power Products You are given n positive integers a1,-,an, and an integer k≥2. Count the number of ...

随机推荐

  1. [转帖]详解shell脚本括号区别--$()、$「 」、$「 」 、$(()) 、「 」 、「[ 」]

    详解shell脚本括号区别--$().$「 」.$「 」 .$(()) .「 」 .「[ 」] 原创 波波说运维 2019-07-31 00:01:00 https://www.toutiao.com ...

  2. MarkdownPad 2 用 LaTeX 编写公式(17)

    方法一:(可离线显示) 1.解压「jaxedit-master.zip」,解压后找到「jaxedit-master」文件夹下「MathJax.js」文件的路径,这个文件在该文件下的路径是「jaxedi ...

  3. C++经典类库

    现实中,C++的库门类繁多,解决的问题也是极其广泛,库从轻量级到重量级的都有.本文为你介绍了十一种类库,有我们常见的,也有不常见的,一起来看. C++类库介绍 再次体现了C++保持核心语言的效率同时大 ...

  4. Linux下的静态库与动态库的生成与调用

    静态库与动态库 静态函数库 这类库的名字一般是libxxx.a,xxx为库的名字.利用静态函数库编译成的文件比较大,因为整个函数库的所有数据都会被整合进目标代码中,他的优点就显而易见了,即编译后的执行 ...

  5. PCA降维笔记

    PCA降维笔记 一个非监督的机器学习算法 主要用于数据的降维 通过降维, 可以发现更便 于人类理解的特征 其他应用:可视化:去噪 PCA(Principal Component Analysis)是一 ...

  6. linux重启php服务

  7. (三)easyUI之树形组件

    一.同步树 1.1 概念 所有节点一次性加载完成 1.2 案例 1.2.1 数据库设计 1.2.2 编码 index.jsp <%@ page language="java" ...

  8. 奇妙的算法【4】-汉诺塔&哈夫曼编码

    1,汉诺塔问题[还是看了源码才记起来的,记忆逐渐清晰] 汉诺塔:汉诺塔(又称河内塔)问题是源于印度一个古老传说的益智玩具.大梵天创造世界的时候做了三根金刚石柱子,在一根柱子上从下往上按照大小顺序摞着6 ...

  9. SQL优化中的重要概念:锁定

    原文:SQL优化中的重要概念:锁定 上篇文章讲的是事务,这篇就引出另一个重要概念,就是锁定. 当一个用户要读取另一个用户正在修改的数据,或者一个用户正在修改另一个用户正在读取的数据,或者一个用户要修改 ...

  10. 解决https 请求过程中SSL问题

    最近一个项目中用到了https的请求,在实际调用过程中发现之前的http方法不支持https,调用一直报错. 查询了一下,添加几行代码解决问题. public string HttpPost(stri ...