分层建图,反向边建在两层之间,两层内部分别建正向边,tarjan缩点后,拓扑排序求一次1所在强连通分量1+n所在强联通分量的最长路(长度定义为路径上的强联通分量内部点数和)。然后由于1所在强连通分量1+n所在强联通分量是相同的点,所以路径长度相当于有一头不计算,也就是一个半开半闭区间的形式。

最后还可能答案不用跑反向边,取一个较大值就行了

CODE

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 200005;
const int MAXM = 300005;
int n, m, fir[MAXN], to[MAXM], nxt[MAXM], cnt, deg[MAXN], f[MAXN];
int dfn[MAXN], low[MAXN], tmr, q[MAXN], indx, scc[MAXN], tot, num[MAXN];
void tarjan(int u) {
dfn[u] = low[u] = ++tmr;
q[++indx] = u;
for(int i = fir[u], v; i; i = nxt[i])
if(!dfn[v=to[i]]) tarjan(v), low[u] = min(low[u], low[v]);
else if(!scc[v]) low[u] = min(low[u], dfn[v]);
if(dfn[u] == low[u]) {
++tot;
do ++num[scc[q[indx]] = tot];
while(q[indx--] != u);
}
}
inline void link(int u, int v) {
to[++cnt] = v; nxt[cnt] = fir[u]; fir[u] = cnt;
}
vector<int>G[MAXN];
int main () {
scanf("%d%d", &n, &m);
for(int i = 1, x, y; i <= m; ++i) {
scanf("%d%d", &x, &y);
link(x, y);
link(y, x+n);
link(x+n, y+n);
}
tarjan(1);
for(int i = 1; i <= 2*n; ++i) if(dfn[i])
for(int k = fir[i], j; k; k = nxt[k])
if(scc[i] != scc[j=to[k]])
G[scc[i]].push_back(scc[j]), ++deg[scc[j]];
int l = 0, r = 0;
for(int i = 1; i <= tot; ++i) {
if(!deg[i]) q[r++] = i;
f[i] = -0x3f3f3f3f;
}
while(l < r) {
int u = q[l++]; if(u == scc[1]) f[u] = 0;
for(int i = 0, v, siz = G[u].size(); i < siz; ++i) {
if(!--deg[v=G[u][i]]) q[r++] = v;
f[v] = max(f[v], f[u] + num[v]);
}
}
printf("%d\n", max(f[scc[n+1]], num[scc[1]]));
}

这样的两分层图可以拓展到多层,网络流用的比较多吧。

BZOJ 3887/Luogu P3119: [Usaco2015 Jan]Grass Cownoisseur (强连通分量+最长路)的更多相关文章

  1. BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP

    BZOJ_3887_[Usaco2015 Jan]Grass Cownoisseur_强连通分量+拓扑排序+DP Description In an effort to better manage t ...

  2. bzoj3887: [Usaco2015 Jan]Grass Cownoisseur

    题意: 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过?(一个点在路径中无论出现多少正整数次对答案的贡献均为1) =>有向图我们 ...

  3. [补档][Usaco2015 Jan]Grass Cownoisseur

    [Usaco2015 Jan]Grass Cownoisseur 题目 给一个有向图,然后选一条路径起点终点都为1的路径出来,有一次机会可以沿某条边逆方向走,问最多有多少个点可以被经过? (一个点在路 ...

  4. BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur 【tarjan】【DP】*

    BZOJ3887 [Usaco2015 Jan] Grass Cownoisseur Description In an effort to better manage the grazing pat ...

  5. 洛谷—— P3119 [USACO15JAN]草鉴定Grass Cownoisseur || BZOJ——T 3887: [Usaco2015 Jan]Grass Cownoisseur

    http://www.lydsy.com/JudgeOnline/problem.php?id=3887|| https://www.luogu.org/problem/show?pid=3119 D ...

  6. BZOJ 3887: [Usaco2015 Jan]Grass Cownoisseur tarjan + spfa

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  7. [Usaco2015 Jan]Grass Cownoisseur Tarjan缩点+SPFA

    考试的时候忘了缩点,人为dfs模拟缩点,没想到竟然跑了30分,RB爆发... 边是可以重复走的,所以在同一个强连通分量里,无论从那个点进入从哪个点出,所有的点一定能被一条路走到. 要使用缩点. 然后我 ...

  8. [Usaco2015 Jan]Grass Cownoisseur 图论 tarjan spfa

    先缩点,对于缩点后的DAG,正反跑spfa,枚举每条边进行翻转即可 #include<cstdio> #include<cstring> #include<iostrea ...

  9. BZOJ3887 [Usaco2015 Jan]Grass Cownoisseur[缩点]

    首先看得出缩点的套路.跑出DAG之后,考虑怎么用逆行条件.首先可以不用,这样只能待原地不动.用的话,考虑在DAG上向后走,必须得逆行到1号点缩点后所在点的前面,才能再走回去. 于是统计从1号点缩点所在 ...

随机推荐

  1. [转帖]关于DDR4内存颗粒、单双面、主板布线和双通道的那些事儿

    我们200期的期中测试大家都做了吧,今天我们放出了完整的答案,想知道自己错在哪儿的同学赶紧过去看哟=><这次期中考试你拿到满分了吗?没有就快去补习吧> https://www.exp ...

  2. [转帖][思路/技术]Mimikatz的多种攻击方式以及防御方式

    [思路/技术]Mimikatz的多种攻击方式以及防御方式 https://bbs.ichunqiu.com/thread-53954-1-1.html 之前学习过 抄密码 没想到还有这么多功能.   ...

  3. POJ 2299-Ultra-QuickSort-线段树的两种建树方式

    此题有两种建树方式! Description In this problem, you have to analyze a particular sorting algorithm. The algo ...

  4. Vue中常用知识点demo

    <!DOCTYPE html> <html lang="zh-CN"> <head> <meta charset="utf-8& ...

  5. pandas数据结构之DataFrame笔记

    DataFrame输出的为表的形式,由于要把输出的表格贴上来比较麻烦,在此就不在贴出相关输出结果,代码在jupyter notebook可以顺利运行代码中有相关解释用来加深理解方便记忆 import ...

  6. Nginx 不支持WebSocket TCP

    proxy_set_header Upgrade $http_upgrade; proxy_set_header Connection "upgrade";

  7. Linux 安装Mysql(图文教程)

    原文:Linux 安装Mysql(图文教程) 版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net ...

  8. Go part 5 结构体,方法与接收器

    结构体 结构体定义 结构体的定义只是一种内存布局的描述(相当于是一个模板),只有当结构体实例化时,才会真正分配内存空间 结构体是一种复合的基本类型,通过关键字 type 定义为 自定义 类型后,使结构 ...

  9. [转载]Linux 命令详解:./configure、make、make install 命令

    [转载]Linux 命令详解:./configure.make.make install 命令 来源:https://www.cnblogs.com/tinywan/p/7230039.html 这些 ...

  10. linux内核过高导致vm打开出错修复脚本

    #!/bin/bashVMWARE_VERSION=workstation-15.1.0TMP_FOLDER=/tmp/patch-vmwarerm -fdr $TMP_FOLDERmkdir -p ...