题目https://www.luogu.org/problemnew/show/P1169

题意:n*m的黑白格子,找到面积最大的黑白相间的正方形和矩形。

思路:传说中的悬线法!用下面这张图说明一下。

悬线法一般是用来求一个没有障碍点的最大子矩阵的。想象从上面垂下来好多的悬线,这些悬线被一个底所限制,并且可以左右移动但是也有范围限制。

现在某条悬线可以移动到的面积就是他能满足的子矩形的面积。比如我们已经处理好了$i-1$行,现在考虑$(i,j)$

对于这道题来说,如果$grid[i][j]!=grid[i-1][j]$就说明他们黑白颜色不同,那么这个以$i$行为底的悬线的高度就是$height[i-1][j]+1$

接下来我们考虑他的左右范围

首先我们可以需要预处理出每个位置可以到的左右范围,比如说$lft[i][j]$就是从$(i,j)$开始往左满足左右相间可以一直到第几列。

当我们要扩展一行的时候对于左边界只能取最右边的一个,对于右边界只能取最左边的。

 #include<cstdio>
#include<cstdlib>
#include<map>
#include<set>
#include<cstring>
#include<algorithm>
#include<vector>
#include<cmath>
#include<stack>
#include<queue>
#include<iostream> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL;
typedef pair<int, int> pr; int n, m;
const int maxn = ;
int grid[maxn][maxn];
int lft[maxn][maxn], rgt[maxn][maxn], height[maxn][maxn]; int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
scanf("%d", &grid[i][j]);
lft[i][j] = rgt[i][j] = j;
height[i][j] = ;
}
} for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
if(grid[i][j] != grid[i][j - ]){
lft[i][j] = lft[i][j - ];
}
}
for(int j = m - ; j > ; j--){
if(grid[i][j] != grid[i][j + ]){
rgt[i][j] = rgt[i][j + ];
}
}
} int anssqu = , ansrec = ;
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
if(i > && grid[i][j] != grid[i - ][j]){
lft[i][j] = max(lft[i][j], lft[i - ][j]);
rgt[i][j] = min(rgt[i][j], rgt[i - ][j]);
height[i][j] = height[i - ][j] + ;
}
int row = rgt[i][j] - lft[i][j] + ;
int col = min(row, height[i][j]);
anssqu = max(anssqu, col * col);
ansrec = max(ansrec, row * height[i][j]);
}
} printf("%d\n%d\n", anssqu, ansrec);
}

洛谷P1169 棋盘制作【悬线法】【区间dp】的更多相关文章

  1. 洛谷P1169 棋盘制作(悬线法)

    题目链接:https://www.luogu.org/problemnew/show/P1169 #include<bits/stdc++.h> #define fi first #def ...

  2. [P1169] 棋盘制作 &悬线法学习笔记

    学习笔记 悬线法 最大子矩阵问题: 在一个给定的矩形中有一些障碍点,找出内部不包含障碍点的,边与整个矩形平行或重合的最大子矩形. 极大子矩型:无法再向外拓展的有效子矩形 最大子矩型:最大的一个有效子矩 ...

  3. 洛谷P1169 [ZJOI2007]棋盘制作 悬线法 动态规划

    P1169 [ZJOI2007]棋盘制作 (逼着自己做DP 题意: 给定一个包含0,1的矩阵,求出一个面积最大的正方形矩阵和长方形矩阵,要求矩阵中相邻两个的值不同. 思路: 悬线法. 用途: 解决给定 ...

  4. P1169 [ZJOI2007]棋盘制作 && 悬线法

    P1169 [ZJOI2007]棋盘制作 给出一个 \(N * M\) 的 \(01\) 矩阵, 求最大的正方形和最大的矩形交错子矩阵 \(n , m \leq 2000\) 悬线法 悬线法可以求出给 ...

  5. P1169 [ZJOI2007]棋盘制作[悬线法/二维dp]

    题目描述 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8 \times 88×8大小的黑白相间的方阵,对应八八六十四卦,黑白 ...

  6. P1169 [ZJOI2007]棋盘制作——悬线法

    ---恢复内容开始--- 给你一个矩阵,选出最大的棋盘,棋盘的要求是黑白相间(01不能相邻),求出最大的正方形和矩形棋盘的面积: 数据n,m<=2000; 这个一看就可能是n2DP,但是写不出. ...

  7. P1169 [ZJOI2007]棋盘制作 悬线法or单调栈

    思路:悬线法\(or\)单调栈 提交:2次 错因:正方形面积取错了\(QwQ\) 题解: 悬线法 讲解:王知昆\(dalao\)的\(PPT\) 详见代码: #include<cstdio> ...

  8. 【BZOJ-3039&1057】玉蟾宫&棋盘制作 悬线法

    3039: 玉蟾宫 Time Limit: 2 Sec  Memory Limit: 128 MBSubmit: 753  Solved: 444[Submit][Status][Discuss] D ...

  9. BZOJ 1057: [ZJOI2007]棋盘制作 悬线法求最大子矩阵+dp

    1057: [ZJOI2007]棋盘制作 Description 国际象棋是世界上最古老的博弈游戏之一,和中国的围棋.象棋以及日本的将棋同享盛名.据说国际象棋起源于易经的思想,棋盘是一个8*8大小的黑 ...

随机推荐

  1. centos7.6编译安装php7.3

    刚开始搞环境装过集成,发现不好用,后来自己编译安装一些扩展啊设置的都很容易找到. 以前装过5.6.7.0发现不一样,最近出了7.3是php5速度的三倍,那有必要升级一下列. 由于之前安装过老版本,依赖 ...

  2. Python连接ORACLE操作

    一.准备工作 1.安装cx_Oracle ttps://pypi.python.org/pypi下查找cx_Oracle并下载 执行安装命令 pip install cx_Oracle-6.0rc1- ...

  3. shell习题第24题:杀进程

    [题目要求] 一台机器负载高,top查看到有很多sh的进程,然后top -c查看可以看到对应的进程命令是sh -c /bin/clear.sh 经分析后发现是因为该脚本执行时间太长,导致后续执行时,上 ...

  4. rman备份跳过read only数据文件,减少备份总量,加快备份时间

    客户需求,RMAN备份时间过长,想缩短备份时间,优化备份. 客户基于表空间进行历史数据归档的方式,将历史的表空间进行read only,想让RMAN跳过只读表空间,减少RMAN备份的数据总量,从而缩短 ...

  5. (四)springmvc之获取servlet原生对象

    一.使用DI注入的方式 <a href="<%=request.getContextPath()%>/servletObj_1">DI注入的方式</a ...

  6. Angularjs 中 ng-repeat 循环绑定事件

    用ng-repeat循环是如果有ng-click之类的事件需要传入参数我们一般这样写 <span class='del' ng-click="RemoveCost({{item.Id} ...

  7. less学习大纲总结

    1.注释的区别 /**/ //2.变量的命名 @+变量名 如:@f_width 引用的时候也要带上@ 符号3.混合 可带参数 默认带值4.匹配模式 相当于js里的if,但不完全是 用于符号条件的匹配 ...

  8. APP漏洞之WebView File域同源策略绕过漏洞

    i春秋作家:MAX丶 基本知识Android架构 Kernel内核层 漏洞危害极大,通用性强 驱动由于多而杂,也可能存在不少漏洞 Libaries系统运行库层 系统中间件形式提供的运行库 包括libc ...

  9. iOS中的分类(category)和类扩展(extension)

    今天在研究swift的时候看到了分类和扩展.这是两个十分重要有用的功能,但是之前用的不多,没有深入了解过,在今天就从头理一遍. 一.分类(Category): 概念: 分类(Category)是OC中 ...

  10. CSS3自定义滚动条样式方法

    该代码收集于网上资源,非原创 /*定义滚动条宽高及背景,宽高分别对应横竖滚动条的尺寸*/ ::-webkit-scrollbar { width: 10px; /*对垂直流动条有效*/ height: ...