【概率论】4-2:期望的性质(Properties of Expectation)
title: 【概率论】4-2:期望的性质(Properties of Expectation)
categories:
- Mathematic
- Probability
keywords:
- Properties of Expectation
toc: true
date: 2018-03-23 10:24:47

Abstract: 本文介绍关于期望的性质,主要是计算性质,所以本文会有非常多公式定理,例子可能较少
Keywords: Properties of Expectation
开篇废话
更新了下博客主题,添加了RSS订阅功能,这个功能看起来不错,以前听说过,但是一直也没用过,今天下了个软件,注册了个账号,帮忙收集信息也是不错,效率高很多,欢迎大家订阅。
本文介绍期望的一些性质,计算性质,而且很多是比较常见的随机变量函数的期望,从这篇看起来我们的套路有点越来越接近国内教材了,定义完了是计算性质,但是这个计算性质确实是必须的,不掌握好后面很多内容学起来就会吃力,就像我前两天看了一会儿统计,发现很多关于计算的的性质,在统计书籍里是直接使用的,如果不掌握好那就是好几脸懵逼。
Basic Theorems
Linear Function:.If Y=aX+b,where a and b are finite constants,then
E(Y)=aE(X)+b
E(Y)=aE(X)+b
E(Y)=aE(X)+b
线性关系,最简单的变化, a,ba,ba,b 是有限的常数,那么新的随机变量的期望和原始变量的关系满足上式,其实用上一篇的关于随机变量函数的方法就能证明这个问题,我们来计算一下:
E(Y)=E(aX+b)=∫∞∞(ax+b)f(x)dx=a∫−∞∞xf(x)dx+b∫−∞∞f(x)dx=aE(x)+b
E(Y)=E(aX+b)=\int^{\infty}_{\infty}(ax+b)f(x)dx\\
=a\int^{\infty}_{-\infty}xf(x)dx+b\int^{\infty}_{-\infty}f(x)dx\\
=aE(x)+b
E(Y)=E(aX+b)=∫∞∞(ax+b)f(x)dx=a∫−∞∞xf(x)dx+b∫−∞∞f(x)dx=aE(x)+b
上面用到上一篇的公式,然后用到了积分的线性性质,完成了证明。
Corollary If X=cX=cX=c with probability 1 ,then E(X)=cE(X)=cE(X)=c
证明:
E(X)=∫−∞∞cf(x)dx=c∫−∞∞f(x)dx=c
E(X)=\int^{\infty}_{-\infty}cf(x)dx\\
=c\int^{\infty}_{-\infty}f(x)dx=c
E(X)=∫−∞∞cf(x)dx=c∫−∞∞f(x)dx=c
Q.E.D
Theorem If there exists a constant such that Pr(X≥a)=1Pr(X\geq a)=1Pr(X≥a)=1, then E(X)≥aE(X)\geq aE(X)≥a. If there exists a constant bbb such that Pr(X≤b)=1Pr(X\leq b)=1Pr(X≤b)=1,then E(X)≤bE(X)\leq bE(X)≤b
这个定理说明当存在一个常数 aaa 满足 Pr(X≥a)=1Pr(X\geq a)=1Pr(X≥a)=1 那么 E(X)≥aE(X)\geq aE(X)≥a 另一部分是反过来的,所以我们只要证明了一半,另一半可以用同样的方法得到结论。
证明:
E(X)=∫−∞∞xf(x)dx=∫a∞xf(x)dx≥∫a∞af(x)dx=aPr(X≥a)=a
E(X)=\int^{\infty}_{-\infty}xf(x)dx=\int^{\infty}_{a}xf(x)dx\\
\geq \int^{\infty}_{a}af(x)dx=aPr(X\geq a)=a
E(X)=∫−∞∞xf(x)dx=∫a∞xf(x)dx≥∫a∞af(x)dx=aPr(X≥a)=a
Q.E.D
其中这一步 ∫a∞xf(x)dx≥∫a∞af(x)dx\int^{\infty}_{a}xf(x)dx\geq \int^{\infty}_{a}af(x)dx∫a∞xf(x)dx≥∫a∞af(x)dx 用到的条件是 x≥ax\geq ax≥a 而 ∫a∞af(x)dx=aPr(X≥a)\int^{\infty}_{a}af(x)dx=aPr(X\geq a)∫a∞af(x)dx=aPr(X≥a) 用到的是积分的线性性质,和概率的相关定义。
Theorem Suppose that E(x)=aE(x)=aE(x)=a and that either Pr(X≥a)=1Pr(X\geq a)=1Pr(X≥a)=1 or Pr(X≤a)=1Pr(X\leq a)=1Pr(X≤a)=1 .Then Pr(X=a)=1Pr(X=a)=1Pr(X=a)=1
定理解释当知道一个随机变量的期望值是 aaa 时,那么如果知道 Pr(X≥a)=1Pr(X\geq a)=1Pr(X≥a)=1 或者 Pr(X≤a)=1Pr(X\leq a)=1Pr(X≤a)=1 必然有 Pr(X=a)=1Pr(X=a)=1Pr(X=a)=1 。
证明当X时离散情况下 Pr(X≥a)=1Pr(X\geq a)=1Pr(X≥a)=1 其他情况类似,假设 x1,x2,…x_1,x_2,\dotsx1,x2,… 包含所有 x>ax>ax>a 那么 Pr(X=x)>0Pr(X=x)>0Pr(X=x)>0 令 p0=Pr(X=a)p_0=Pr(X=a)p0=Pr(X=a) 那么
E(X)=p0a+∑j=1∞xjPr(X=xj)
E(X)=p_0a+\sum^{\infty}_{j=1}x_jPr(X=x_j)
E(X)=p0a+j=1∑∞xjPr(X=xj)
每个 xjx_jxj 都大于 aaa 其和不能变大 因为
E(X)≥p0a+∑j=1∞aPr(X=xj)=a
E(X)\geq p_0a + \sum^{\infty}_{j=1}aPr(X=x_j)=a
E(X)≥p0a+j=1∑∞aPr(X=xj)=a
证毕。
其实离散情况想一下就正大概知道定理的正确性,但是连续情况下用微积分证明难度就有点大了。
Theorem If X1,…,XnX_1,\dots,X_nX1,…,Xn are nnn random variables such that each expectation E(Xi)E(X_i)E(Xi) is finite (i=0,…,n)(i=0,\dots,n)(i=0,…,n) ,then
E(X1+⋯+Xn)=E(X1)+⋯+E(Xn)
E(X_1+\dots+X_n)=E(X_1)+\dots+E(X_n)
E(X1+⋯+Xn)=E(X1)+⋯+E(Xn)
证明期望的加法性质,连续双随机变量证明过程如下,其他情况类似:
E(X1+X2)=∫−∞∞∫−∞∞(x1+x2)f(x1,x2)dx1dx2=∫−∞∞∫−∞∞x1f(x1,x2)dx1dx2+∫−∞∞∫−∞∞x2f(x1,x2)dx1dx2=∫−∞∞x1f1(x1)dx1+∫−∞∞x2f2(x2)dx2=E(X1)+E(X2)
E(X_1+X_2)=\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}(x_1+x_2)f(x_1,x_2)dx_1dx_2\\
=\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}x_1f(x_1,x_2)dx_1dx_2+\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}x_2f(x_1,x_2)dx_1dx_2\\
=\int^{\infty}_{-\infty}x_1f_1(x_1)dx_1+\int^{\infty}_{-\infty}x_2f_2(x_2)dx_2\\
=E(X_1)+E(X_2)
E(X1+X2)=∫−∞∞∫−∞∞(x1+x2)f(x1,x2)dx1dx2=∫−∞∞∫−∞∞x1f(x1,x2)dx1dx2+∫−∞∞∫−∞∞x2f(x1,x2)dx1dx2=∫−∞∞x1f1(x1)dx1+∫−∞∞x2f2(x2)dx2=E(X1)+E(X2)
证明过程最关键一步是 ∫−∞∞∫−∞∞x1f(x1,x2)dx1dx2=∫−∞∞x1f1(x1)dx1\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}x_1f(x_1,x_2)dx_1dx_2=\int^{\infty}_{-\infty}x_1f_1(x_1)dx_1∫−∞∞∫−∞∞x1f(x1,x2)dx1dx2=∫−∞∞x1f1(x1)dx1 的过程,首先调换积分变量的次序 ∫−∞∞∫−∞∞x1f(x1,x2)dx2dx1\int^{\infty}_{-\infty}\int^{\infty}_{-\infty}x_1f(x_1,x_2)dx_2dx_1∫−∞∞∫−∞∞x1f(x1,x2)dx2dx1 这样,内层积分中x1x_1x1 是常量,那么就可以提出来 ∫−∞∞x1[∫−∞∞f(x1,x2)dx2]dx1\int^{\infty}_{-\infty}x_1[\int^{\infty}_{-\infty}f(x_1,x_2)dx_2]dx_1∫−∞∞x1[∫−∞∞f(x1,x2)dx2]dx1 这样中括号里面的部分就是 x1x_1x1 的边缘变量了,同理可得 x2x_2x2 的情况,故得到最后结论。
上述证明过程证明了随机变量的和的期望等于期望的和,而不需要考虑其联合分布,同理可以推广到多变量情况
下面我们就要考虑多变量线性关系了
Corollary Assume that E(xi)E(x_i)E(xi) is finite for i=1,…,ni=1,\dots,ni=1,…,n For all constants a1,…,ana_1,\dots,a_na1,…,an and bbb
E(a1X1+⋯+anXn+b)=a1E(X1)+…anE(Xn)+b
E(a_1X_1+\dots + a_nX_n+b)=a_1E(X_1)+\dots a_nE(X_n)+b
E(a1X1+⋯+anXn+b)=a1E(X1)+…anE(Xn)+b
这个引理的证明是上面加法性质的证明以及前面第一个线性关系的扩展,这里就不再证明了。
以上为节选内容,完整原文地址:https://www.face2ai.com/Math-Probability-4-2-Properties-of-Expectations转载请标明出处
原文地址2:https://www.tony4ai.com/Math-Probability-4-2-Properties-of-Expectations转载请标明出处
【概率论】4-2:期望的性质(Properties of Expectation)的更多相关文章
- 《A First Course in Probability》-chaper7-期望的性质-期望的性质-协方差
在实际的问题中,我们往往想要通过已有的数据来分析判断两个事件的发生是否有相关性.当然一个角度去寻找这两个事件内在的逻辑关系,这个角度需要深究两个事件的本质,而另外一个角度就是概率论提供的简单方法:基于 ...
- python数学第七天【期望的性质】
- 概率论基础教程 (Sheldon M. Ross 著)
第1章 组合分析 1.1 引言 1.2 计数基本法则 1.3 排列 1.4 组合 1.5 多项式系数 *1.6 方程的整数解个数 第2章 概率论公里 2.1 引言 2.2 样本空间和事件 2.3 概率 ...
- AI 高等数学、概率论基础
一.概论 基础引入: 原理一:[两边夹定理] 原理二:[极限] X为角度x对应的圆弧的点长: 原理三[单调性]: 引入: 二.导数 常见函数的导数: 四.应用: 求解: 泰勒展式和麦克劳林展式: 泰勒 ...
- [学习笔记]概率&期望
概率的性质 非负性:对于每一个事件$A,0\;\leq\;P(A)\;\leq\;1$. 规范性:对于必然事件$S,P(S)=1$;对于不可能事件$A,P(A)=0$. 容斥性:对于任意两个事件$A, ...
- Lecture5_1&5_2.随机变量的数字特征(数学期望、方差、协方差)
一.数学期望 1.离散型随机变量的数学期望 设X为离散随机变量,其概率分布为:P(X=xk)=pk 若无穷级数$\sum_{k=1}^{+\infty}x_kp_k$绝对收敛 (即满足$\sum_{k ...
- 概率论与数理统计基础<1>:随机事件与随机变量
Part1. 随机事件 1-1.随机试验 随机试验:可以在相同条件下重复进行,每次试验的结果不止一个,事先知道所有可能的结果但不确定是哪一个的试验. 举例:重复的抛出一枚均匀的硬币就是一个随机试验,事 ...
- Bzoj 4720 换教室 (期望DP)
刚发现Bzoj有Noip的题目,只会换教室这道题..... Bzoj 题面:Bzoj 4720 Luogu题目:P1850 换教室 大概是期望DPNoip极其友好的一道题目,DP不怎么会的我想到了,大 ...
- cf期望概率专题
cf1009E:求到第i段期望和的比较困难,但是单独求每段的期望是比较容易的,所以单独对每段求和,然后累计总和 E[i]=1/2*a1+1/4*a2+...+1/2^(i-1)*ai-1+1/2^(i ...
随机推荐
- 【转载】在使用JDBC连接MySql时报错:You must configure either the server or JDBC driver (via the serverTimezone configuration property) to use a more specifc time zone value if you want to utilize time zone support
在使用JDBC连接MySql时报错:You must configure either the server or JDBC driver (via the serverTimezone config ...
- Sublime Text 开发神器相关 插件安装 功能介绍
无法安装更多见http://blog.csdn.net/freshlover/article/details/44261229/ Sublime Text 3 安装插件管理 Package Contr ...
- kong网关命令(一)
上次在虚拟机里安装kong网关后,因为版本(1.4)太高,目前Kong Dashboard无法支持, 后续发现Git上有个开源工具Kong admin ui,下载源码并部署到NGINX. 但是发现使用 ...
- 如何把Windows主机中的文件拉到centOS虚拟机中
如何把Windows主机中的文件拉到centOS虚拟机中 2017年02月19日 22:19:12 Ariel_lin2017 阅读数:6023 标签: vmware tools共享文件 之前写了 ...
- 关于将多个json对象添加到数组中的测试
如果用数组push添加不到数组中的,这个我也不知道是为什么?然后我选择了另一种发放就是从数组出发,逆向添加 最后的数组是这样的: data1=['公司1','公司2','公司3','公司4']; ar ...
- Java 面向对象(五)抽象
一.抽象概述 1.由来 父类中的方法,被它的子类们重写,子类各自的实现都不尽相同.那么父类的方法声明和方法主体,只有声明还有意义,而方法主体则没有存在的意义了. 我们把没有方法主体的方法称为抽象方法. ...
- 简单实现app使用PC图片
提一个很人性化的需求: 在自己的app里使用PC里的图片. 关键点:传输.怎么把图片从PC导入自己的APP. 因为iOS的封闭性,一般用户不能很方便把图片导入手机相册.笔者稍微想了下,实现功能其实也有 ...
- JS实现数组去重(重复元素保留一个)
1.遍历数组法 它是最简单的数组去重方法(indexOf方法) 实现思路:新建一个数组,遍历去要重的数组,当值不在新数组的时候(indexOf为-1)就加入该新数组中: var arr=[2,8,5, ...
- 9.Redis的Java客户端Jedis
Redis的Java客户端Jedis Jedis所需jar包 commons-pool-1.6.jar jedis-2.1.0.jar 1.Jedis常用操作(jedis中的api 和 我们在 l ...
- tornado基本使用一
一.tornado web程序编写思路 . 创建web应用实例对象,第一个初始化参数为路由映射列表 . 定义实现路由映射列表中的handler类 . 创建服务器实例, 绑定服务器端口 . 启动当前线程 ...