一、pipeline的用法

pipeline可以用于把多个estimators级联成一个estimator,这么 做的原因是考虑了数据处理过程中一系列前后相继的固定流程,比如feature selection->normalization->classification

pipeline提供了两种服务:

  • Convenience:只需要调用一次fit和predict就可以在数据集上训练一组estimators
  • Joint parameter selection可以把grid search 用在pipeline中所有的estimators参数的参数组合上面

注意:Pipleline中最后一个之外的所有estimators都必须是变换器(transformers),最后一个estimator可以是任意类型(transformer,classifier,regresser)

如果最后一个estimator是个分类器,则整个pipeline就可以作为分类器使用,如果最后一个estimator是个聚类器,则整个pipeline就可以作为聚类器使用。

from sklearn.preprocessing import StandardScaler
from sklearn.decomposition import PCA
from sklearn.linear_model import LogisticRegression from sklearn.pipeline import Pipeline estimator=[('pca', PCA()),
('clf', LogisticRegression())
]
pipe=Pipeline(estimator)
print(pipe)
#Pipeline(steps=[('pca', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,svd_solver='auto', tol=0.0, whiten=False)), ('clf', LogisticRegression(C=1.0, class_weight=None, dual=False,fit_intercept=True,intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,penalty='l2', random_state=None, solver='liblinear', tol=0.0001,verbose=0, warm_start=False))])
print(pipe.steps[0])
#('pca', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False))
print(pipe.named_steps['pca'])
#PCA(copy=True, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False)

在pipeline中estimator的参数通过使用<estimator>__<parameter>语法来获取

#修改参数并打印输出
print(pipe.set_params(clf__C=10))
#Pipeline(steps=[('pca', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,svd_solver='auto', tol=0.0, whiten=False)), ('clf', LogisticRegression(C=10, class_weight=None, dual=False,fit_intercept=True,intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,penalty='l2', random_state=None, solver='liblinear', tol=0.0001,verbose=0, warm_start=False))])

既然有参数的存在,就可以使用网格搜索方法来调节参数

from sklearn.model_selection import GridSearchCV
params=dict(pca__n_components=[2,5,10],clf__C=[0,1,10,100])
grid_research=GridSearchCV(pipe,param_grid=params)

单个阶段(step)可以用参数替换,而且非最后阶段还可以将其设置为None来忽略:

from sklearn.linear_model import LogisticRegression
params=dict(pca=[None,PCA(5),PCA(10)],clf=[SVC(),LogisticRegression()],
clf_C=[0.1,10,100])
grid_research=GridSearchCV(pipe,param_grid=params)

函数make_pipeline是一个构造pipeline的简短工具,他接受可变数量的estimators并返回一个pipeline,每个estimator的名称自动填充。

from sklearn.pipeline import make_pipeline
from sklearn.naive_bayes import MultinomialNB
from sklearn.preprocessing import Binarizer
print(make_pipeline(Binarizer(),MultinomialNB())) #Pipeline(steps=[('binarizer', Binarizer(copy=True, threshold=0.0)), ('multinomialnb', MultinomialNB(alpha=1.0, class_prior=None, fit_prior=True))])

FeatureUnion:composite(组合)feature spaces

FeatureUnion把若干个transformer objects组合成一个新的transformer,这个新的transformer组合了他们的输出,一个FeatureUnion对象接受一个transformer对象列表

二、FeatureUnion 的用法

from sklearn.pipeline import FeatureUnion
from sklearn.decomposition import PCA
from sklearn.decomposition import KernelPCA
estimators=[('linear_pca',PCA()),('kernel_pca',KernelPCA())]
combined=FeatureUnion(estimators)
print(combined) #FeatureUnion(n_jobs=1, transformer_list=[('linear_pca', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None, svd_solver='auto', tol=0.0, whiten=False)), ('kernel_pca', KernelPCA(alpha=1.0, coef0=1, copy_X=True, degree=3, eigen_solver='auto', fit_inverse_transform=False, gamma=None, kernel='linear', kernel_params=None, max_iter=None, n_components=None, n_jobs=1, random_state=None, remove_zero_eig=False, tol=0))],transformer_weights=None)

与pipeline类似,feature union也有一种比较简单的构造方法:make_union,不需要显示的给每个estimator指定名称。

Featu热Union设置参数

#修改参数
print(combined.set_params(kernel_pca=None)) #FeatureUnion(n_jobs=1,transformer_list=[('linear_pca', PCA(copy=True, iterated_power='auto', n_components=None, random_state=None,svd_solver='auto', tol=0.0, whiten=False)), ('kernel_pca', None)],transformer_weights=None)

另外一篇讲pipleline不错的文章:http://blog.csdn.net/lanchunhui/article/details/50521648

sklearn中pipeline的用法和FeatureUnion的更多相关文章

  1. 利用sklearn的Pipeline简化建模过程

    很多框架都会提供一种Pipeline的机制,通过封装一系列操作的流程,调用时按计划执行即可.比如netty中有ChannelPipeline,TensorFlow的计算图也是如此. 下面简要介绍skl ...

  2. sklearn中的Pipeline

    在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA ...

  3. sklearn中的pipeline实际应用

    前面提到,应用sklearn中的pipeline机制的高效性:本文重点讨论pipeline与网格搜索在机器学习实践中的结合运用: 结合管道和网格搜索以调整预处理步骤以及模型参数 一般地,sklearn ...

  4. 【笔记】多项式回归的思想以及在sklearn中使用多项式回归和pipeline

    多项式回归以及在sklearn中使用多项式回归和pipeline 多项式回归 线性回归法有一个很大的局限性,就是假设数据背后是存在线性关系的,但是实际上,具有线性关系的数据集是相对来说比较少的,更多时 ...

  5. sklearn中的交叉验证(Cross-Validation)

    这个repo 用来记录一些python技巧.书籍.学习链接等,欢迎stargithub地址sklearn是利用python进行机器学习中一个非常全面和好用的第三方库,用过的都说好.今天主要记录一下sk ...

  6. sklearn中的投票法

    投票法(voting)是集成学习里面针对分类问题的一种结合策略.基本思想是选择所有机器学习算法当中输出最多的那个类. 分类的机器学习算法输出有两种类型:一种是直接输出类标签,另外一种是输出类概率,使用 ...

  7. (数据科学学习手札25)sklearn中的特征选择相关功能

    一.简介 在现实的机器学习任务中,自变量往往数量众多,且类型可能由连续型(continuou)和离散型(discrete)混杂组成,因此出于节约计算成本.精简模型.增强模型的泛化性能等角度考虑,我们常 ...

  8. sklearn中的数据预处理和特征工程

    小伙伴们大家好~o( ̄▽ ̄)ブ,沉寂了这么久我又出来啦,这次先不翻译优质的文章了,这次我们回到Python中的机器学习,看一下Sklearn中的数据预处理和特征工程,老规矩还是先强调一下我的开发环境是 ...

  9. sklearn中的多项式回归算法

    sklearn中的多项式回归算法 1.多项式回归法多项式回归的思路和线性回归的思路以及优化算法是一致的,它是在线性回归的基础上在原来的数据集维度特征上增加一些另外的多项式特征,使得原始数据集的维度增加 ...

随机推荐

  1. Codeforces gym102222 B.Rolling The Polygon 凸包/余弦定理

    题意: 有一个不保证凸的多边形,让你滚一圈,计算某点滚出的轨迹多长. 题解: 求出凸包后,以每个点为转轴,转轴到定点的距离为半径,用余弦定理计算圆心角,计算弧长. #include<iostre ...

  2. MySql在建立索引优化时需要注意的问题

    MySql在建立索引优化时需要注意的问题 设计好MySql的索引可以让你的数据库飞起来,大大的提高数据库效率.设计MySql索引的时候有一下几点注意: 1,创建索引 对于查询占主要的应用来说,索引显得 ...

  3. window_mysql踩坑

    https://blog.csdn.net/qq_37350706/article/details/81707862 先去官网下载点击的MySQL的下载 下载完成后解压 解压完是这个样子 配置系统环境 ...

  4. VC++ 2010 创建高级Ribbon界面详解(1)

    运用 VC++ 2010 创建高级 Ribbon 界面详解,包括 Ribbon 界面的结构层次.Ribbon 控件的使用等,ribbon 用户界面,ribbon interface ,ribbon 高 ...

  5. form表单和CSS基础

    form 表单 input type="" 表单的组合标签,用来确定需要的是什么输入类型 type属性值: 文本输入框:text 密码输入框:password 单选按钮:radio ...

  6. 解压lzma格式的img文件报“Filename has an unknown suffix, skipping”怎么办

    1 确认img文件是什么压缩格式 file 文件名 2 报标题错误怎么办? mv initrd.img initrd.img.xz xz -d initrd.img.xz cpio -ivd < ...

  7. [Code+#3]博弈论与概率统计

    题目 记得曾经和稳稳比谁后抄这个题的题解,看来是我输了 不难发现\(p\)是给着玩的,只需要求一个总情况数除以\(\binom{n+m}{n}\)就好了 记\(i\)为无效的失败次数,即\(\rm A ...

  8. 前端跨域实现的几种方式?及使用Nginx反向代理配置。

    早期为了防止CSRF(跨域请求伪造)的攻击,浏览器引入了同源策略(SOP)来提高安全性.而所谓"同源策略",即同域名(domain或ip).同端口.同协议的才能互相获取资源,而不能 ...

  9. CentOS 7 用 yum 安装 Nginx

    在 CentOS 7 中,直接使用 yum 安装 Nignx 会提示无下载源.因此,需要添加 Nginx 的下载源到 yum: sudo rpm -Uvh http://nginx.org/packa ...

  10. CSS兼容问题资料汇集

    CSS兼容问题一直困扰着CSSer,面对各浏览器,往往感觉束手无策,愁眉不展.CSS Hack是在标准CSS没办法兼容各浏览器显示效果时才会用上的补救方法,在各浏览器厂商解析CSS没有达成一致前,我们 ...