1.1.1         map端连接- DistributedCache分布式缓存小数据集

当一个数据集非常小时,可以将小数据集发送到每个节点,节点缓存到内存中,这个数据集称为边数据。用map函数将小数据集中的数据按键聚合到大的数据集中,输出连接数据集,进行连接操作。

(1)   分布式缓存指定缓存文件

执行命令行时,采用hadoop  jar hadoop-example.jar MapSideJoinMain  -files input/cityfile/tb_dim_city.dat input/data/all output

-files input/cityfile/tb_dim_city.dat指定需要缓存的文件,会被复制到各个节任务点。

(2)指定缓存文件的三种类型

Hadoop 命令行选项中,有三个命令可以实现文件复制分发到任务的各个节点。用户启动一个作业,Hadoop 会把由 -files、-archives、和 -libjars 等选项所指定的文件复制到分布式文件系统之中,任务运行前,节点管理器从分布式文件系统中复制文件到本地。

1) -files 选项指定待分发的文件,文件内包含以逗号隔开的 URL 列表。文件可以存放在本地文件系统、HDFS、或其它 Hadoop 可读文件系统之中。 如果尚未指定文件系统,则这些文件被默认是本地的。即使默认文件系统并非本地文件系统,这也是成立的。

2) -archives 选项向自己的任务中复制存档(压缩)文件,比如JAR 文件、ZIP 文件、tar 文件和 gzipped tar文件,这些文件会被解档到任务节点。

3) -libjars 选项把 JAR 文件添加到 mapper 和 reducer 任务的类路径中。如果作业 JAR 文件并非包含很多库 JAR 文件,这点会很有用。

(3)缓存文件删除机制

节点管理器为缓存中的文件各维护一个计数器,任务运行时,文件计数器加1,任务完成后,计数器减1,计数器为0时才能删除文件,当节点缓存容量大于一定值(yarn.nodemanger.localizer.cache.target-size-mb设置,默认10GB),才会删除最近最少使用的文件。

(4)Job的分布式缓存API

除了可以用命令行参数指定缓存文件外,还以通过Job的API指定缓存文件;即通过job对象调用下面的函数设置缓存文件。

//以下两组方法将文件或存档添加到分布式缓存

public void addCacheFile(URI uri);

public void addCacheArchive(URI uri);

//以下两组方法将一次性向分布式缓存中添加一组文件或存档

public void setCacheFiles(URI[] files);

public void setCacheArchives(URI[] archives);

//以下两组方法将文件或存档添加到 MapReduce 任务的类路径

public void addFileToClassPath(Path file);

public void addArchiveToClassPath(Path archive);

public void createSymlink();

(6)DistributedCache缓存小数据集实现hadoop map端连接实例

下面的实例是将城市名称的数据集和用户信息的数据集进行连接,城市名称的数据集很小,而用户信息的数据集很大,所以可以采用缓存文件的方式,将城市信息数据集发送到任务,map任务通过setup方法从缓存中读取小数据集文件tb_dim_city.dat,在内存中形成map映射,map函数处理用户信息数据,根据用户信息中的城市id去map映射中找到城市名称,然后合并输出。

package Temperature;
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.HashMap;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.filecache.DistributedCache;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
 *
 *
用途说明:  
 * Map side join中的left outer join  
 * 左连接,两个文件分别代表2个表,连接字段table1的id字段和table2的cityID字段  
 * table1(左表):tb_dim_city(id int,name string,orderid int,city_code,is_show),  
 * 假设tb_dim_city文件记录数很少,tb_dim_city.dat文件内容,分隔符为"|":  
 * id     name  orderid  city_code  is_show  
 * 0       其他        9999     9999         0  
 * 1       长春        1        901          1  
 * 2       吉林        2        902          1  
 * 3       四平        3        903          1  
 * 4       松原        4        904          1  
 * 5       通化        5        905          1  
 * 6       辽源        6        906          1  
 * 7       白城        7        907          1  
 * 8       白山        8        908          1  
 * 9       延吉        9        909          1  
 * -------------------------风骚的分割线-------------------------------  
 * table2(右表):tb_user_profiles(userID int,userName string,network string,double flow,cityID int)  
 * tb_user_profiles.dat文件内容,分隔符为"|":  
 * userID   network     flow    cityID  
 * 1           2G       123      1  
 * 2           3G       333      2  
 * 3           3G       555      1  
 * 4           2G       777      3  
 * 5           3G       666      4  
 * -------------------------风骚的分割线-------------------------------  
 *  结果:  
 *  1   长春  1   901 1   1   2G  123  
 *  1   长春  1   901 1   3   3G  555  
 *  2   吉林  2   902 1   2   3G  333  
 *  3   四平  3   903 1   4   2G  777  
 *  4   松原  4   904 1   5   3G  666  
 */
public class MapSideJoinMain extends Configured implements Tool{
    private static final Logger logger = LoggerFactory.getLogger(MapSideJoinMain.class);
    public static class LeftOutJoinMapper extends Mapper {         private HashMap city_info = new HashMap<String,String>();
        private Text outPutKey = new Text();
        private Text outPutValue = new Text();
        private String mapInputStr = null;
        private String mapInputSpit[] = null;
        private String city_secondPart = null;
        /**
         *
此方法在每个task开始之前执行,这里主要用作从DistributedCache  
         * 中取到tb_dim_city文件,并将里边记录取出放到内存中。  
         */
       
@Override
        protected void setup(Context context)
                throws IOException, InterruptedException {
            BufferedReader br = null;
            //获得当前作业的DistributedCache相关文件  
            Path[] distributePaths = DistributedCache.getLocalCacheFiles(context.getConfiguration());
            String cityInfo = null;
            for(Path p : distributePaths){
                if(p.toString().endsWith("tb_dim_city.dat")){
                    //读缓存文件,并放到mem中  
                    br = new BufferedReader(new FileReader(p.toString()));
                    while(null!=(cityInfo=br.readLine())){
                        String[] cityPart = cityInfo.split("\\|",5);
                        if(cityPart.length ==5){
                            city_info.put(cityPart[0], cityPart[1]+"\t"+cityPart[2]+"\t"+cityPart[3]+"\t"+cityPart[4]);
                        }
                    }
                }
            }
        }         /**
         * Map
端的实现相当简单,直接判断tb_user_profiles.dat中的  
         * cityID是否存在我的map中就ok了,这样就可以实现Map Join了  
         */
       
protected void map(Object key, Text value, Context context)
                throws IOException, InterruptedException {
            //排掉空行  
            if(value == null || value.toString().equals("")){
                return;
            }
            mapInputStr = value.toString();
            mapInputSpit = mapInputStr.split("\\|",4);
            //过滤非法记录  
            if(mapInputSpit.length != 4){
                return;
            }
            //判断链接字段是否在map中存在  
            city_secondPart = (String) city_info.get((Object) mapInputSpit[3]);
            if(city_secondPart != null){
                this.outPutKey.set(mapInputSpit[3]);
                this.outPutValue.set(city_secondPart+"\t"+mapInputSpit[0]+"\t"+mapInputSpit[1]+"\t"+mapInputSpit[2]);
                context.write(outPutKey, outPutValue);
            }
        }
    }
   
    public int run(String[] args) throws Exception {
        Configuration conf=getConf(); //获得配置文件对象  
        DistributedCache.addCacheFile(new Path(args[1]).toUri(), conf);//为该job添加缓存文件  
        Job job=new Job(conf,"MapJoinMR");
        job.setNumReduceTasks(0);         FileInputFormat.addInputPath(job, new Path(args[0])); //设置map输入文件路径  
        FileOutputFormat.setOutputPath(job, new Path(args[2])); //设置reduce输出文件路径         job.setJarByClass(MapSideJoinMain.class);
        job.setMapperClass(LeftOutJoinMapper.class);         job.setInputFormatClass(TextInputFormat.class); //设置文件输入格式  
        job.setOutputFormatClass(TextOutputFormat.class);//使用默认的output格式         //设置map的输出key和value类型  
        job.setMapOutputKeyClass(Text.class);         //设置reduce的输出key和value类型  
        job.setOutputKeyClass(Text.class);
        job.setOutputValueClass(Text.class);
        job.waitForCompletion(true);
        return job.isSuccessful()?0:1;
    }
    public static void main(String[] args) throws IOException,
            ClassNotFoundException, InterruptedException {
        try {
            int returnCode =  ToolRunner.run(new MapSideJoinMain(),args);
            System.exit(returnCode);
        } catch (Exception e) {
            // TODO Auto-generated catch block  
           
logger.error(e.getMessage());
        }
    }
}

实例参考文献:

https://www.cnblogs.com/cssdongl/p/6018806.html

自己开发了一个股票智能分析软件,功能很强大,需要的点击下面的链接获取:

https://www.cnblogs.com/bclshuai/p/11380657.html

9.3.1 map端连接- DistributedCache分布式缓存小数据集的更多相关文章

  1. 使用map端连接结合分布式缓存机制实现Join算法

    前面我们介绍了MapReduce中的Join算法,我们提到了可以通过map端连接或reduce端连接实现join算法,在文章中,我们只给出了reduce端连接的例子,下面我们说说使用map端连接结合分 ...

  2. Hadoop DistributedCache分布式缓存的使用

    做项目的时候遇到一个问题,在Mapper和Reducer方法中处理目标数据时,先要去检索和匹配一个已存在的标签库,再对所处理的字段打标签.因为标签库不是很大,没必要用HBase.我的实现方法是把标签库 ...

  3. hadoop中的分布式缓存——DistributedCache

    分布式缓存一个最重要的应用就是在进行join操作的时候,如果一个表很大,另一个表很小很小,我们就可以将这个小表进行广播处理,即每个计算节点 上都存一份,然后进行map端的连接操作,经过我的实验验证,这 ...

  4. .net 分布式架构之分布式缓存中间件

    开源git地址: http://git.oschina.net/chejiangyi/XXF.BaseService.DistributedCache 分布式缓存中间件  方便实现缓存的分布式,集群, ...

  5. 分布式缓存DistributedCache

    本文是对MR案例:Map-Join的解读. 在hadoop中,共享全局变量或全局文件的几种方法 使用Configuration的set()方法,只适合数据内容比较小的场景 将缓存文件放在HDFS上,每 ...

  6. 分布式缓存DistributedCache的使用

    分布式缓存用于将使用的小文件首先分发到各个datanode节点上,然后利用map/reduce阶段的setup()方法将文件内容读入内存,加快程序执行.具体实现方法如下: http://demievi ...

  7. Hadoop 之 分布式缓存的原理和方法——DistributedCache

    1.什么时Hadoop的分布式缓存 答:在执行MapReduce时,可能Mapper之间需要共享一些信息,如果信息量不大,可以将其从HDFS中加载到内存中,这就是Hadoop分布式缓存机制. 2.如何 ...

  8. 大数据【四】MapReduce(单词计数;二次排序;计数器;join;分布式缓存)

       前言: 根据前面的几篇博客学习,现在可以进行MapReduce学习了.本篇博客首先阐述了MapReduce的概念及使用原理,其次直接从五个实验中实践学习(单词计数,二次排序,计数器,join,分 ...

  9. hadoop 分布式缓存

    Hadoop 分布式缓存实现目的是在所有的MapReduce调用一个统一的配置文件,首先将缓存文件放置在HDFS中,然后程序在执行的过程中会可以通过设定将文件下载到本地具体设定如下: public s ...

随机推荐

  1. C++ | C++ 基础知识 | 类型与声明

    一.类型 C++ 包含一整套基本类型,这些类型对应计算机最基本的存储单元并且展现 1.0 布尔值 一个布尔变量(bool)的取值或者是 true 或者是 false,布尔变量常用于表达逻辑运算结果. ...

  2. 区间dp - 括号匹配并输出方案

    Let us define a regular brackets sequence in the following way: 1. Empty sequence is a regular seque ...

  3. Ansible playbooks常用模块案例操作

    打开git bash 连接ansible服务器,然后进入deploy用户 #ssh root@192.168.96.188 进入python3.6虚拟环境 #su - deploy #source . ...

  4. 编写TypeScript工具类型,你需要知道的知识

    什么是工具类型 用 JavaScript 编写中大型程序是离不开 lodash 工具的,而用 TypeScript 编程同样离不开工具类型的帮助,工具类型就是类型版的 lodash .简单的来说,就是 ...

  5. [洛谷P4012] [网络流24题] 深海机器人问题

    Description 深海资源考察探险队的潜艇将到达深海的海底进行科学考察. 潜艇内有多个深海机器人.潜艇到达深海海底后,深海机器人将离开潜艇向预定目标移动. 深海机器人在移动中还必须沿途采集海底生 ...

  6. 美食家App开发日记1

    前期一直在看第一行代码Android,这本书感觉讲基础讲得特别细致. 百看不如一试. 因为刚刚接触Android,没办法做到想写什么功能就直接一下写好,只能从最开始基础的控件使用开始练习. 所以一直在 ...

  7. RabbitMQ入门(三)订阅模式

      在之前的文章RabbitMQ入门(二)工作队列中,我们创建了一个工作队列.工作队列背后的假设是每一项任务都被准确地传送至一个worker.在本文中,我们将会做一些不同的事情--我们将会把一个消息发 ...

  8. 什么是“跑面”呢? - ERSS耳斯百科:您的随身移动百科

    跑面 [pǎo miàn] 跑面,是一个汉语词汇,拼音为pǎo miàn,英文名为Run-Noodles,最基本解释为人跑步去吃面,其意义还有多重深层解释. 中文名:跑面 英文名:Run-Noodle ...

  9. Dynamics email的subject标题出现 CRM:0000xxxx

    怎样移除email subject标题中出现的CRM:0000xxxx Settings->Administration->System Settings->Email->Un ...

  10. 文件上传二:FormData上传

    介绍三种上传方式: 文件上传一:伪刷新上传 文件上传二:FormData上传 文件上传三:base64编码上传 Flash的方式也玩过,现在不推荐用了. 真正的异步上传,FormData的更多操作,请 ...