spark shuffle内在原理说明
在MapReduce框架中,shuffle是连接Map和Reduce之间的桥梁,Map的输出要用到Reduce中必须经过shuffle这个环节,shuffle的性能高低直接影响了整个程序的性能和吞吐量。Spark作为MapReduce框架的一种实现,自然也实现了shuffle的逻辑。
Shuffle
Shuffle是MapReduce框架中的一个特定的phase,介于Map phase和Reduce phase之间,当Map的输出结果要被Reduce使用时,输出结果需要按key哈希,并且分发到每一个Reducer上去,这个过程就是shuffle。由于shuffle涉及到了磁盘的读写和网络的传输,因此shuffle性能的高低直接影响到了整个程序的运行效率。
下面这幅图清晰地描述了MapReduce算法的整个流程,其中shuffle phase是介于Map phase和Reduce phase之间。
概念上shuffle就是一个沟通数据连接的桥梁,那么实际上shuffle(partition)这一部分是如何实现的的呢,下面我们就以Spark为例讲一下shuffle在Spark中的实现。
Spark Shuffle进化史
先以图为例简单描述一下Spark中shuffle的整一个流程:
- 首先每一个Mapper会根据Reducer的数量创建出相应的bucket,bucket的数量是M×RM×R,其中MM是Map的个数,RR是Reduce的个数。
- 其次Mapper产生的结果会根据设置的partition算法填充到每个bucket中去。这里的partition算法是可以自定义的,当然默认的算法是根据key哈希到不同的bucket中去。
- 当Reducer启动时,它会根据自己task的id和所依赖的Mapper的id从远端或是本地的block manager中取得相应的bucket作为Reducer的输入进行处理。
这里的bucket是一个抽象概念,在实现中每个bucket可以对应一个文件,可以对应文件的一部分或是其他等。
Apache Spark 的 Shuffle 过程与 Apache Hadoop 的 Shuffle 过程有着诸多类似,一些概念可直接套用,例如,Shuffle 过程中,提供数据的一端,被称作 Map 端,Map 端每个生成数据的任务称为 Mapper,对应的,接收数据的一端,被称作 Reduce 端,Reduce 端每个拉取数据的任务称为 Reducer,Shuffle 过程本质上都是将 Map 端获得的数据使用分区器进行划分,并将数据发送给对应的 Reducer 的过程。
参考:
http://jerryshao.me/architecture/2014/01/04/spark-shuffle-detail-investigation/
https://ihainan.gitbooks.io/spark-source-code/content/section3/index.html
spark shuffle内在原理说明的更多相关文章
- Spark Shuffle原理、Shuffle操作问题解决和参数调优
摘要: 1 shuffle原理 1.1 mapreduce的shuffle原理 1.1.1 map task端操作 1.1.2 reduce task端操作 1.2 spark现在的SortShuff ...
- 【原创】大数据基础之Spark(5)Shuffle实现原理及代码解析
一 简介 Shuffle,简而言之,就是对数据进行重新分区,其中会涉及大量的网络io和磁盘io,为什么需要shuffle,以词频统计reduceByKey过程为例, serverA:partition ...
- Spark Shuffle原理解析
Spark Shuffle原理解析 一:到底什么是Shuffle? Shuffle中文翻译为“洗牌”,需要Shuffle的关键性原因是某种具有共同特征的数据需要最终汇聚到一个计算节点上进行计算. 二: ...
- Spark Shuffle调优原理和最佳实践
对性能消耗的原理详解 在分布式系统中,数据分布在不同的节点上,每一个节点计算一部份数据,如果不对各个节点上独立的部份进行汇聚的话,我们计算不到最终的结果.我们需要利用分布式来发挥Spark本身并行计算 ...
- Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理)
Spark Shuffle 堆外内存溢出问题与解决(Shuffle通信原理) http://xiguada.org/spark-shuffle-direct-buffer-oom/ 问题描述 Spar ...
- spark shuffle:分区原理及相关的疑问
一.分区原理 1.为什么要分区?(这个借用别人的一段话来阐述.) 为了减少网络传输,需要增加cpu计算负载.数据分区,在分布式集群里,网络通信的代价很大,减少网络传输可以极大提升性能.mapreduc ...
- MapReduce Shuffle原理 与 Spark Shuffle原理
MapReduce的Shuffle过程介绍 Shuffle的本义是洗牌.混洗,把一组有一定规则的数据尽量转换成一组无规则的数据,越随机越好.MapReduce中的Shuffle更像是洗牌的逆过程,把一 ...
- spark的shuffle和原理分析
概述 Shuffle就是对数据进行重组,由于分布式计算的特性和要求,在实现细节上更加繁琐和复杂. 在MapReduce框架,Shuffle是连接Map和Reduce之间的桥梁,Map阶段 ...
- MapReduce Shuffle 和 Spark Shuffle 原理概述
Shuffle简介 Shuffle的本意是洗牌.混洗的意思,把一组有规则的数据尽量打乱成无规则的数据.而在MapReduce中,Shuffle更像是洗牌的逆过程,指的是将map端的无规则输出按指定的规 ...
随机推荐
- P2414 [NOI2011]阿狸的打字机
P2414 [NOI2011]阿狸的打字机 AC自动机+树状数组 优质题解 <------题目分析 先AC自动机搞出Trie图 然后根据fail指针建一只新树 把树映射(拍扁)到一个序列上,用树 ...
- wireshark捕获表达式之Berkeley Packet Filter (BPF) syntax
就网络抓包来说,绝大部分的情况下,我们都是对特定的ip/端口/协议进行捕获和分析,否则就会有大量的垃圾报文,使得分析和性能低下.大部分的抓包工具都采用BPF语法,具体可参考 http://biot.c ...
- JavaScript 中语法规范及调试
JavaScript 中语法规范及调试 版权声明:未经博主授权,内容严禁分享转载 JavaScript 开发环境 JavaScript 脚本可以使用任意一款纯文本编辑器进行编程开发. 常见的前端开发编 ...
- 20145206邹京儒《网络对抗技术》 PC平台逆向破解
20145206邹京儒<网络对抗技术> PC平台逆向破解 注入shellcode并执行 一.准备一段shellcode 二.设置环境 具体在终端中输入如下: apt-cache searc ...
- 利用.bat(批处理)来删除KEIL编译生成的无用文件
新建一个.txt文件. 在里面输入如下内容: del *.bak /s del *.ddk /s del *.edk /s del *.lst /s del *.lnp /s del *.mpf /s ...
- scp命令在linux间传送文件的方法
当两台LINUX主机之间要互传文件时可使用SCP命令来实现,建立信任关系之后可不输入密码. 把你的本地主机用户的ssh公匙文件复制到远程主机用户的~/.ssh/authorized_keys文件中 ...
- Delphi XE5 for Android (七)
Delphi XE5下,TMainMenu和TPopupMenu不可用,那么如何支持Android的菜单呢? 查看了一些资料,不得要领,只是摸索着先模拟一下吧. 首先在窗体上放置一个TPanel,在其 ...
- Python 逗号的几种作用
转自http://blog.csdn.net/liuzx32/article/details/7831247 最近研究Python 遇到个逗号的问题 一直没弄明白 今天总算搞清楚了 1.逗号在参数传 ...
- Croc Champ 2013 - Round 1 E. Copying Data 分块
E. Copying Data time limit per test 2 seconds memory limit per test 256 megabytes input standard inp ...
- python3.7 安装pyqt5
pip install pyqt5