You've got an array consisting of n integers: a[1], a[2], ..., a[n]. Moreover, there are m queries, each query can be described by three integers li, ri, ki. Query li, ri, ki means that we should add  to each element a[j], where li ≤ j ≤ ri.

Record  means the binomial coefficient, or the number of combinations from yelements into groups of x elements.

You need to fulfil consecutively all queries and then print the final array.

Input

The first line contains integers nm (1 ≤ n, m ≤ 105).

The second line contains n integers a[1], a[2], ..., a[n] (0 ≤ ai ≤ 109) — the initial array.

Next m lines contain queries in the format li, ri, ki — to all elements of the segment li... ri add number  (1 ≤ li ≤ ri ≤ n; 0 ≤ k ≤ 100).

Output

Print n integers: the i-th number is the value of element a[i] after all the queries. As the values can be rather large, print them modulo 1000000007 (109 + 7).

Examples

Input
5 1
0 0 0 0 0
1 5 0
Output
1 1 1 1 1
Input
10 2
1 2 3 4 5 0 0 0 0 0
1 6 1
6 10 2
Output
2 4 6 8 10 7 3 6 10 15

题意:给出n个数,m次操作
每次操作给出li,ri,ki
将li-ri的范围里的第j个数加上  题解:考虑到上面的ki是在每个操作里是不会变的
考虑在杨辉三角中找规律

k=i是k=i-1的前缀和
然后可以考虑差分
在高维进行好差分后一维一维的降下来
注意差分的时候要每一层都差分 代码如下:
#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<string>
#include<vector>
#include<cstring>
#include<iostream>
#include<algorithm>
#define mod 1000000007
using namespace std; long long fac[],inv[],n,m,a[][],sum[][]; long long kasumi(long long a,long long b)
{
long long ans=1ll;
while(b)
{
if(b&)
{
ans=ans*a%mod;
}
a=a*a%mod;
b>>=;
}
return ans;
} long long c(long long a,long long b)
{
return fac[a]*inv[b]%mod*inv[a-b]%mod;
} int main()
{
fac[]=,inv[]=;
for(int i=; i<=; i++)
{
fac[i]=fac[i-]*i*1ll%mod;
}
inv[]=kasumi(fac[],mod-);
for(int i=; i>=; i--)
{
inv[i]=inv[i+]*(i+)*1ll%mod;
}
scanf("%lld%lld",&n,&m);
for(int i=; i<n; i++)
{
scanf("%lld",&a[][i]);
}
long long l,r,k;
while(m--)
{
scanf("%lld%lld%lld",&l,&r,&k);
l--,k++;
a[k][l]++;
for(int i=; i<=k; i++)
{
a[i][r]-=c(k-i+r-l-,k-i);
a[i][r]=(a[i][r]+mod)%mod;
}
}
for(int k=; k>=; k--)
{
for(int i=;i<n;i++)
{
a[k][i]+=sum[k+][i+];
a[k][i]%=mod;
}
for(int i=;i<n;i++)
{
sum[k][i+]+=sum[k][i]+a[k][i];
sum[k][i+]%=mod;
}
}
for(int i=;i<n;i++)
{
printf("%lld ",a[][i]%mod);
}
}

 
 

CodeForces 408E Curious Array(组合数学+差分)的更多相关文章

  1. codeforces 407C Curious Array

    codeforces 407C Curious Array UPD: 我觉得这个做法比较好理解啊 参考题解:https://www.cnblogs.com/ChopsticksAN/p/4908377 ...

  2. Codeforces 408 E. Curious Array

    $ >Codeforces \space 408 E. Curious Array<$ 题目大意 : 有一个长度为 \(n\) 的序列 \(a\) ,\(m\) 次操作,每一次操作给出 \ ...

  3. Codeforces 482B Interesting Array(线段树)

    题目链接:Codeforces 482B Interesting Array 题目大意:给定一个长度为N的数组,如今有M个限制,每一个限制有l,r,q,表示从a[l]~a[r]取且后的数一定为q,问是 ...

  4. Codeforces 1077C Good Array 坑 C

    Codeforces 1077C Good Array https://vjudge.net/problem/CodeForces-1077C 题目: Let's call an array good ...

  5. codeforces 482B. Interesting Array【线段树区间更新】

    题目:codeforces 482B. Interesting Array 题意:给你一个值n和m中操作,每种操作就是三个数 l ,r,val. 就是区间l---r上的与的值为val,最后问你原来的数 ...

  6. codeforces 797 E. Array Queries【dp,暴力】

    题目链接:codeforces 797 E. Array Queries   题意:给你一个长度为n的数组a,和q个询问,每次询问为(p,k),相应的把p转换为p+a[p]+k,直到p > n为 ...

  7. Curious Array Codeforces - 407C(高阶差分(?)) || sequence

    https://codeforces.com/problemset/problem/407/C (自用,勿看) 手模一下找一找规律,可以发现,对于一个修改(l,r,k),相当于在[l,r]内各位分别加 ...

  8. Curious Array CodeForces - 407C (高阶差分)

    高阶差分板子题 const int N = 1e5+111; int a[N], n, m, k; int C[N][111], d[N][111]; signed main() { scanf(&q ...

  9. codeforces 86D : Powerful array

    Description An array of positive integers a1, a2, ..., an is given. Let us consider its arbitrary su ...

随机推荐

  1. 【转】C#命名规范

    原文地址:http://www.jb51.net/article/57163.htm 本文详细汇总了C#常用的命名规则.分享给大家供大家参考.具体如下: Pascal 规则每个单词开头的字母大写(如 ...

  2. PHP RSA加密解密

    1.生成密钥和公钥 开始前需要准备openssl环境 linux 需要安装openssl工具包,传送门http://www.openssl.org/source/ window 下需要安装openss ...

  3. h3c 云计算管理平台

  4. ansible初识三

    一.setup模块 ansible的 setup模块主要用来收集信息, 查看参数: [root@localhost ~]# ansible-doc -s setup # 查看参数,部分参数如下: fi ...

  5. python 监控windows磁盘空间和备份大小

    #!/usr/bin/env python # Version = 3.5.2 # __auth__ = '无名小妖' import os import time import sendmail im ...

  6. Abstract(抽象)

    谈到抽象,就先谈谈面向对象语言的三大特性,也是人们口中常说的封装.继承.多态. 封装:什么是封装,按到我的理解,封装就是把某些类的相关属性和方法封装,对内实现数据影城,对外提供稳定接口. 继承:从字面 ...

  7. 塔防游戏 Day2

    1. 创建炮塔选择的 UI 使用 UI -> Toggle .注意指定同一 group. 2. 创建炮台的数据类 [System.Serializable] // 序列化 public clas ...

  8. Docker常用操作命令

    docker 常用管理命令 修改镜像地址 sudo tee /etc/docker/daemon.json <<-'EOF' { "registry-mirrors": ...

  9. sh 脚本

    more log.log| awk '{if($1>"15:10:54.851" && length($1)==12){print $0}}'

  10. linux下使用gtest框架进行c/c++单元测试

    linux下使用gtest框架进行c/c++单元测试 前言 关于此次开发工具的选择,因为我最近尝试在linux下使用vim进行c/c++编程,且之前已经对vim进行了相关的配置,所以这里应作业要求直接 ...