CDOJ 1307 ABCDE 前缀和优化dp
ABCDE
题目连接:
http://acm.uestc.edu.cn/#/problem/show/1307
Description
Binary-coded decimal (BCD) is a kind of binary encodings of decimal numbers where each decimal digit is represented by a fixed number of bits.
Awesome Binary-Coded Decimal (ABCD) is, under the above conditions, any number represented by corresponding binary value won't exceed \(9\).
For example, in \(\\{8,4,2,1\\}\) encoding, \(1111\) is \(15\), exceed \(9\), so \(\\{8,4,2,1\\}\) encoding is BCD but not ABCD. In \(\\{2,4,2,1\\}\) encoding, any number represented by corresponding binary value won't exceed \(9\), so \(\\{2,4,2,1\\}\) encoding is ABCD.
Now, let's talk about ABCDE (Awesome Binary-Coded Decimal Extension).
An n-ABCDE is such a encoding that can only represent \(0\) to \(n\), and every number from \(0\) to \(n\) can be represented by one or more binary values. So \(\\{2,4,2,1\\}\) is a \(9\)-ABCDE and \(\\{8,4,2,1\\}\) is a \(15\)-ABCDE as we mentioned above. In addition, \(\\{16,8,4,2,1\\}\) is a \(31\)-ABCDE.
Two encoding will be considered different if they have different length, or they have different number set, with the number of occurrence of each number considered. More precisely, two different coding will have such a number that occur different times.
So, \(\\{2,4,2,1\\}\) encoding is the same with the \(\\{1,2,2,4\\}\) encoding, but it is different from \(\\{2,4,4,1\\}\).
Now, given a number \(n\), can you tell me how many different \(n\)-ABCDEs?
Input
There is an integer \(T\) in the first line, indicates the number of test cases.
For each test, the only line contains a integer \(n\).
\(1\leq T\leq 5000\)
\(1\leq n \leq 5000\)
Output
For each test, output an integer in one line, which is the number of different \(n\)-ABCDEs. As the answer may be too large, output it modulo \((10^9+7)\) (i.e. if the answer is \(X\), you should output \(X\ \%\ (10^9+7)\)).
Sample Input
5
1
2
3
4
5
Sample Output
1
1
2
2
4
Hint
题意
在数电中,有一种码,类似BCD码这种玩意儿
第i位如果为1的话,那么ans+=a[i],a[i]是这一位的位权
然后现在给你一个n,问你一共有多少种码可以表示1~n的所有数呢?
1,1,2和2,1,1视作一样。
题解:
首先考虑这个东西,如果不视作一样的话,就很简单了
dp[i]表示当前和为i的方案数,显然这个玩意儿能够一直转移到2i-1去。
由于视作一样,那么我们只要维护一个当前的最大值就好了,保证这个序列是递增的,这样就都不会一样了。
dp[i][j]表示现在和为i,最大值为j的方案数有多少。
这个转移发现可以用前缀和优化,这样就是n^2的了。
代码
#include<bits/stdc++.h>
using namespace std;
const int mod = 1e9+7;
const int maxn = 5005;
int dp[maxn][maxn];
int sum[maxn][maxn];
void init()
{
dp[0][0]=1;
for(int i=0;i<=5000;i++)sum[0][i]=1;
for(int i=1;i<=5000;i++)
{
for(int j=1;j<=5000;j++)
if(j*2-1<=i)dp[i][j]=(dp[i][j]+sum[i-j][j])%mod;
sum[i][0]=dp[i][0];
for(int j=1;j<=5000;j++)
sum[i][j]=(sum[i][j-1]+dp[i][j])%mod;
}
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--)
{
int n;
scanf("%d",&n);
printf("%d\n",sum[n][5000]);
}
}
CDOJ 1307 ABCDE 前缀和优化dp的更多相关文章
- LOJ 6089 小Y的背包计数问题 —— 前缀和优化DP
题目:https://loj.ac/problem/6089 对于 i <= √n ,设 f[i][j] 表示前 i 种,体积为 j 的方案数,那么 f[i][j] = ∑(1 <= k ...
- P5241 序列(滚动数组+前缀和优化dp)
P5241 序列 挺神仙的一题 看看除了dp好像没什么其他办法了 想着怎么构个具体的图出来,然鹅不太现实. 于是我们想办法用几个参数来表示dp数组 加了几条边肯定要的吧,于是加个参数$i$表示已加了$ ...
- bzoj 1044 [HAOI2008]木棍分割——前缀和优化dp
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1044 前缀和优化. 但开成long long会T.(仔细一看不用开long long) #i ...
- bzoj 3398 [Usaco2009 Feb]Bullcow 牡牛和牝牛——前缀和优化dp / 排列组合
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3398 好简单呀.而且是自己想出来的. dp[ i ]表示最后一个牡牛在 i 的方案数. 当前 ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- CF601C Kleofáš and the n-thlon(期望+前缀和优化dp)
传送门 解题思路 要求这个人的排名,我们可以先求出某个人比他排名靠前的概率,然后再乘上\(m-1\)即为答案.求某个人比他排名靠前可以用\(dp\),设\(f[i][j]\)表示前\(i\)场比赛某人 ...
- 5.19 省选模拟赛 小B的夏令营 概率 dp 前缀和优化dp
LINK:小B的夏令营 这道题是以前从没见过的优化dp的方法 不过也在情理之中. 注意读题 千万不要像我这个sb一样 考完连题意都不知道是啥. 一个长方形 要求从上到下联通的概率. 容易发现 K天只是 ...
- Codeforces Round #274 (Div. 1) C. Riding in a Lift 前缀和优化dp
C. Riding in a Lift Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/480/pr ...
- Topcoder 15405 - PrettyLiar(可删除背包+前缀和优化 dp)
题面传送门 题意: 给出两个长度为 \(n\) 的数组 \(a,b\) 和一个整数 \(s\). 你可以任意重排数组 \(a,b\),总共 \((n!)^2\) 种方案. 现在又两个人 A,B 来玩游 ...
随机推荐
- mac 上使用octave的plot错误的解决办法
在mac10.10上使用octave的时候,键入 plot(x, y)的时候会出现如下错误: ^ line : unknown or ambiguous terminal type; type jus ...
- Deep Learning基础--理解LSTM/RNN中的Attention机制
导读 目前采用编码器-解码器 (Encode-Decode) 结构的模型非常热门,是因为它在许多领域较其他的传统模型方法都取得了更好的结果.这种结构的模型通常将输入序列编码成一个固定长度的向量表示,对 ...
- MySQL-IN和Exists区别
1.in和exists in是把外表和内表作hash连接,而exists是对外表作loop循环,每次loop循环再对内表进行查询.一直以来认为exists比in效率高的说法是不准确的. exists ...
- 自定义事件的触发dispatchEvent
1. 对于标准浏览器,其提供了可供元素触发的方法:element.dispatchEvent(). 不过,在使用该方法之前,我们还需要做其他两件事,及创建和初始化.因此,总结说来就是: documen ...
- 【摘要】JavaScript 的性能优化:加载和执行
1.浏览器遇到js代码会暂停页面的下载和渲染,谁晓得js代码会不会把html给强奸(改变)了: 2.延迟脚本加载:defer 属性 <html> <head> <titl ...
- HDU 5348 MZL's endless loop(DFS去奇数度点+欧拉回路)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5348 题目大意:给你一张图,有n个点,和m条无向边,让你把m条无向边变成有向边,使得每个节点的|出度- ...
- ZOJ 1610 Count the Colors(区间染色)
题目大意:多组数据,每组给一个n(1=<n<=8000),下面有n行,每行有l,r,color(1=<color<=8000),表示将l~r颜色变为color,最后求各种颜色( ...
- python的scrapy框架
scrapy是python中数据抓取的框架.简单的逻辑如下所示 scrapy的结构如图所示,包括scrapy engine.scheduler.downloader.spider.item pipel ...
- anaconda不错的
- ceph存储池基本管理
一,设置默认存储池的pg或pgp的值(推荐100左右),在ceph.conf文件里增加: osd pool default pg num = osd pool default pgp num = 二, ...