题目大意:
  一个有向无环图上有n个结点,
  现在告诉你n-1个条件(x,y),表示x和y的先后关系。
  问原图共有几种可能的拓扑序?

思路:
  树形DP。
  f[i][j]表示对于第i个结点,有j个点在它前面的方案数。
  设当前结点为x,后面有一个结点为y,原本x前有i个结点,y前有j个结点,我们可以得到状态转移方程:
  f[x][size[x]-i+size[y]-j]+=f[x][size[x]-i]*c[i+j][i]*c[size[x]-i+size[y]-j][size[y]-j]*((sum[y][size[y]]-sum[y][size[y]-j]+mod)%mod);
  其中c是预处理好的组合数,sum是f数组的前缀和。
  同样对于y在x前面的情况,状态转移方程如下:
  f[x][i+j]+=f[x][i]*c[i+j][i]*c[size[x]-i+size[y]-j][size[y]-j]*sum[y][j];
  最后就是求f[root][0]~f[root][n-1]的和,也就是sum[root][n]。

 #include<cstdio>
#include<cctype>
#include<vector>
#include<cstring>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int N=,mod=1e9+;
struct Edge {
int to;
bool type;
};
std::vector<Edge> e[N];
inline void add_edge(const int &u,const int &v,const bool &type) {
e[u].push_back((Edge){v,type});
e[v].push_back((Edge){u,!type});
}
int c[N][N];
inline void prep() {
for(register int i=;i<N;i++) {
c[i][]=;
for(register int j=;j<=i;j++) {
c[i][j]=(c[i-][j-]+c[i-][j])%mod;
}
}
}
int f[N][N],sum[N][N],size[N];
inline void init() {
memset(f,,sizeof f);
for(register int i=;i<N;i++) {
e[i].clear();
}
}
void dp(const int &x,const int &par) {
size[x]=;
f[x][]=;
for(unsigned i=;i<e[x].size();i++) {
const int &y=e[x][i].to;
if(y==par) continue;
dp(y,x);
static int g[N];
memset(g,,sizeof g);
if(e[x][i].type) {
for(register int i=;i<=size[x];i++) {
for(register int j=;j<=size[y];j++) {
g[size[x]-i+size[y]-j]
+=(int64)f[x][size[x]-i]
*c[i+j][i]%mod
*c[size[x]-i+size[y]-j][size[y]-j]%mod
*((sum[y][size[y]]-sum[y][size[y]-j]+mod)%mod)%mod;
g[size[x]-i+size[y]-j]%=mod;
}
}
} else {
for(register int i=;i<=size[x];i++) {
for(register int j=;j<=size[y];j++) {
g[i+j]
+=(int64)f[x][i]
*c[i+j][i]%mod
*c[size[x]-i+size[y]-j][size[y]-j]%mod
*sum[y][j]%mod;
g[i+j]%=mod;
}
}
}
size[x]+=size[y];
memcpy(f[x],g,sizeof g);
}
size[x]++;
for(register int i=;i<=size[x];i++) {
sum[x][i]=(sum[x][i-]+f[x][i-])%mod;
}
}
int main() {
prep();
for(register int T=getint();T;T--) {
init();
const int n=getint();
for(register int i=;i<n;i++) {
const int u=getint(),sign=getchar(),v=getint();
add_edge(u,v,sign=='<');
}
dp(,-);
printf("%d\n",sum[][n]);
}
return ;
}

[HEOI2013]SAO的更多相关文章

  1. 3167: [Heoi2013]Sao [树形DP]

    3167: [Heoi2013]Sao 题意: n个点的"有向"树,求拓扑排序方案数 Welcome to Sword Art Online!!! 一开始想错了...没有考虑一个点 ...

  2. 【BZOJ3167】[HEOI2013]SAO(动态规划)

    [BZOJ3167][HEOI2013]SAO(动态规划) 题面 BZOJ 洛谷 题解 显然限制条件是一个\(DAG\)(不考虑边的方向的话就是一棵树了). 那么考虑树型\(dp\),设\(f[i][ ...

  3. P4099 [HEOI2013]SAO

    P4099 [HEOI2013]SAO 贼板子有意思的一个题---我()竟然没看题解 有一张连成树的有向图,球拓扑序数量. 树形dp,设\(f[i][j]\)表示\(i\)在子树中\(i\)拓扑序上排 ...

  4. BZOJ 3167: [Heoi2013]Sao

    3167: [Heoi2013]Sao Time Limit: 30 Sec  Memory Limit: 256 MBSubmit: 96  Solved: 36[Submit][Status][D ...

  5. P4099 [HEOI2013]SAO(树形dp)

    P4099 [HEOI2013]SAO 我们设$f[u][k]$表示以拓扑序编号为$k$的点$u$,以$u$为根的子树中的元素所组成的序列方案数 蓝后我们在找一个以$v$为根的子树. 我们的任务就是在 ...

  6. 【BZOJ3167/4824】[Heoi2013]Sao/[Cqoi2017]老C的键盘

    [BZOJ3167][Heoi2013]Sao Description WelcometoSAO(StrangeandAbnormalOnline).这是一个VRMMORPG,含有n个关卡.但是,挑战 ...

  7. [HEOI2013]SAO(树上dp,计数)

    [HEOI2013]SAO (这写了一个晚上QAQ,可能是我太蠢了吧.) 题目说只有\(n-1\)条边,然而每个点又相互联系.说明它的结构是一个类似树的结构,但是是有向边连接的,题目问的是方案个数,那 ...

  8. 【做题记录】 [HEOI2013]SAO

    P4099 [HEOI2013]SAO 类型:树形 \(\text{DP}\) 这里主要补充一下 \(O(n^3)\) 的 \(\text{DP}\) 优化的过程,基础转移方程推导可以参考其他巨佬的博 ...

  9. [HEOI2013]SAO ——计数问题

    题目大意: Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...

  10. [BZOJ3167][P4099][HEOI2013]SAO(树形DP)

    题目描述 Welcome to SAO ( Strange and Abnormal Online).这是一个 VR MMORPG, 含有 n 个关卡.但是,挑战不同关卡的顺序是一个很大的问题. 有 ...

随机推荐

  1. http://www.cnblogs.com/kkdn/

    /*** PHP保留两位小数的几种方法* @link http://www.phpddt.com*/$num = 10.4567; //第一种:利用round()对浮点数进行四舍五入echo roun ...

  2. 爬虫--Scrapy之Downloader Middleware

    下载器中间件(Downloader Middleware) 下载器中间件是介于Scrapy的request/response处理的钩子框架. 是用于全局修改Scrapy request和respons ...

  3. MongoDB 3.4.2 配置 CentOS 6.5 远程连接

    1.新建用户 db.createUser({user: 'test', pwd: 'myPassword', roles: [{role: 'readWrite', db: 'test_db'}]}) ...

  4. Vuex-Mutation

    更改 Vuex 的 store 中的状态的唯一方法是提交 mutation.Vuex 中的 mutation 非常类似于事件:每个 mutation 都有一个字符串的 事件类型 (type) 和 一个 ...

  5. 76.ZYNQ-用PS控制DDR3内存读写

    本编文章的目的主要用简明的方法对DDR3进行读写,当然这种方式每次读写都需要CPU干预,效率是比较低的,但是这是学习的过程吧. 本系列文章尽可能的让每一个实验都相对独立,过程尽可能保证完整性,保证实验 ...

  6. MySQL-索引工作原理及使用注意事项

    1.为什么需要索引(Why is it needed)? 当数据保存在磁盘类存储介质上时,它是作为数据块存放.这些数据块是被当作一个整体来访问的,这样可以保证操作的原子性.硬盘数据块存储结构类似于链表 ...

  7. Machine Learning系列--隐马尔可夫模型的三大问题及求解方法

    本文主要介绍隐马尔可夫模型以及该模型中的三大问题的解决方法. 隐马尔可夫模型的是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而 ...

  8. 2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage

    2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage A. Union of Doubly Link ...

  9. Nginx源码分析-ngx_module_s结构体

    该结构体是整个Nginx模块化架构最基本的数据结构体.它描述了Nginx程序中一个模块应该包括的基本属性,在tengine/src/core/ngx_conf_file.h中定义了该结构体 struc ...

  10. javaScript传递参数,参数变化问题

    值传递 var a=10; b(a); function b(v){ v--; } alert(a); //out 10 对象传递 var a={}; a.v=10; b(a); function b ...