LOJ#551 Matrix
本地打表在线AC什么的最喜欢了。
题意
\(\rm Alice\)和\(\rm Bob\)在玩游戏,他们要给一个\(n\times n\)的矩阵打标记。初始时没有任何标记,每一轮\(\rm Bob\)先手,两个人可以选一个格子打上自己的标记(\(\rm Alice \to A,Bob\to B\)),但如果选择了已经打过标记的格子就输掉游戏。
如果在某个时刻,存在一个长度为\(n\)的排列\(p\)使得对于\(i=1,2,\dots,n\),有第\(i\)行第\(p_i\)列的标记为\(\rm A\)成立,那么\(\rm Alice\)获胜。
如果在\(\lfloor\frac{n^2}{2}\rfloor\)轮后,\(\rm Alice\)依然没有获胜,那么\(\rm Bob\)获胜。
给定\(T\)组询问,每次给定一个数\(n\),问在之前的游戏规则下:
\(1\)、双方记得之前的所有操作,\(\rm Alice\)是否有必胜策略。
\(2\)、\(\rm Alice\)只记得当前这一轮\(\rm Bob\)的操作,\(\rm Bob\)记得所有操作,\(\rm Alice\)是否有必胜策略。
\(T\leq 100,n\leq 10^{18}\)。
题解
这种题目就应该大力猜结论。
先考虑比较简单的第一问,在\(n\)比较大的平凡情况下,假设\(\rm Bob\)标记了第\(x\)行的某个格子,那么\(\rm Alice\)就可以选择第\(x\)行的另一个格子(记为第\(y\)列)。之后,\(\rm Alice\)选择第\(y\)列上的格子一定是不优的,因此对\(\rm Alice\)来说,她可以将棋盘重新看作\((n-1)\times (n-1)\)大小的。只要在\((n-1)\times (n-1)\)时有必胜策略,那么\(n\times n\)时就一定有必胜策略。
那么暴搜最小的有必胜策略的\(n\),可以本地发现\(n=4\)时有必胜策略,因此第一问的答案就是\([n\geq 4]\)。
对于第二问,显然必胜策略应该避免选择已经标记过的格子。可以发现唯一的方法就是使棋盘上的格子两两匹配,对于每一个匹配,假如\(\rm Bob\)选择了其中一个,那么\(\rm Alice\)就立即选择另一个。
首先\(n\)为奇数的时候显然无解,考虑怎么在\(n\)为偶数的时候构造一种匹配方案,使得对于每一个匹配无论选择哪一个,总存在一个排列满足对应的位置都标记了\(\rm A\)。
先本地暴搜\(n\)小的情况(当然要加一点剪枝),可以发现\(n=4\)和\(n=6\)都是有解的。
那么对于更大的\(n\),只要在对角线上依次放上\(n=4\)或\(n=6\)的,剩下的位置随便匹配即可。
比如下面就是\(n=10\)的构造方法,蓝色部分随意匹配即可。
于是第二问的答案就是\([n\geq 4,n\equiv 0(\bmod 2)]\)。
#include<cstdio>
#define int long long
signed main()
{
int T,n;
scanf("%lld",&T);
while(T--)
{
scanf("%lld",&n);
puts(n>=4?"Yes":"No");
puts(n>=4&&!(n&1)?"Yes":"No");
}
return 0;
}
LOJ#551 Matrix的更多相关文章
- soj#551 loj#2833 帐篷
传送门 分析 dp[i][j]表示考虑了i行j列的方案数 我们每次考虑三种情况: 一个点自己放 两个点在同一行 两个点在同一列 代码 #include<bits/stdc++.h> usi ...
- Loj 3058. 「HNOI2019」白兔之舞
Loj 3058. 「HNOI2019」白兔之舞 题目描述 有一张顶点数为 \((L+1)\times n\) 的有向图.这张图的每个顶点由一个二元组 \((u,v)\) 表示 \((0\le u\l ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj#6183. 看无可看
Loj#6183. 看无可看 题目描述 首先用特征根求出通项公式\(A_n=p\cdot 3^n+q\cdot(-1)^n\).通过给定的\(f_0,f_1\)可以解出\(p,q\). 然后我们要求的 ...
- Codeforces 551 D. GukiZ and Binary Operations
\(>Codeforces \space 551 D. GukiZ and Binary Operations<\) 题目大意 :给出 \(n, \ k\) 求有多少个长度为 \(n\) ...
- loj#2269. 「SDOI2017」切树游戏
还是loj的机子快啊... 普通的DP不难想到,设F[i][zt]为带上根玩出zt的方案数,G[i][zt]为子树中的方案数,后面是可以用FWT优化的 主要是复习了下动态DP #include< ...
- Loj #3044. 「ZJOI2019」Minimax 搜索
Loj #3044. 「ZJOI2019」Minimax 搜索 题目描述 九条可怜是一个喜欢玩游戏的女孩子.为了增强自己的游戏水平,她想要用理论的武器武装自己.这道题和著名的 Minimax 搜索有关 ...
- 【LOJ】#3098. 「SNOI2019」纸牌
LOJ#3098. 「SNOI2019」纸牌 显然选三个以上的连续牌可以把他们拆分成三个三张相等的 于是可以压\((j,k)\)为有\(j\)个连续两个的,有\(k\)个连续一个的 如果当前有\(i\ ...
- 【LOJ】#3090. 「BJOI2019」勘破神机
LOJ#3090. 「BJOI2019」勘破神机 为了这题我去学习了一下BM算法.. 很容易发现这2的地方是\(F_{1} = 1,F_{2} = 2\)的斐波那契数列 3的地方是\(G_{1} = ...
随机推荐
- 所谓的液晶屏驱动IC是单独的IC还是在屏内就集成
所谓的液晶屏驱动IC是单独的IC还是在屏内就集成 时间:2016-12-05 作者:admin 其实无论什么液晶屏,想要正常工作必须包括两个人:玻璃屏+驱动IC:但是现在有一些液晶厂商他们不 ...
- 开关电源五种PWM反馈控制模式
开关电源五种PWM反馈控制模式 来源:--作者:--浏览:178时间:2016-08-10 14:18 关键词: 1 引言 PWM开关稳压或稳流电源基本工作原理就是在输入电压变化.内部参数变化.外接负 ...
- sql语句 这里是取一串数据中的 头 中 尾 几个数据
select t1.name 流转单号,t1.date 日期, t3.name_template 产品编码, left(t3.name_template,3) 图, substring(t3.name ...
- BroadcastReceiver广播相关 - 转
BroadcastReceiver广播接收者用于接收系统或其他程序(包括自己程序)发送的广播. 一.注册广播 在android中,我们如果想接收到广播信息,必须自定义我们的广播接收者.要写一个类来继承 ...
- 20155220 Exp2 后门原理与实践
20155220 Exp2 后门原理与实践 1.Windows获得Linux Shell 在windows下,打开CMD,使用ipconfig指令查看本机IP 然后使用ncat.exe程序,ncat. ...
- 工具神器推荐 Vox 和 search everything
工具神器推荐 Vox 和 search everything vox官网: http://www.wox.one/
- JVM技术周报第1期
JVM技术周报 · 第1期 JVM技术每周分享整理了JVM技术交流群每周讨论的内容,由群内成员整理归纳而成.如果你有兴趣入群讨论,请关注「Java技术精选」公众号,通过右下角菜单「入群交流」加我好友, ...
- REST-framework快速构建API--频率
前面已经了解了API的认证和授权.认证,是对资源访问者的第一道门,必须有钥匙,你才能进来拿我的资源:授权,是对资源访问者的第二道门,虽然你进来了,但是你可以拿走什么资源,还是我说了算,就是授权. 当然 ...
- 虚拟机console基础环境部署——安全加固
1. 概述 安全是一个重要的课题.广义上可以总结为: 主机安全 网络安全 信息安全 数据安全 虽然console已经是最小化安装,但是这并不能说明console就已经安全了.之前的博客对console ...
- JQ_One()函数特效
先看一个例子,当点击 p 元素时,增加该元素的文本大小,代码如下:<script type="text/javascript" src="http://keleyi ...