POJ 1265:Area
Time Limit: 1000MS | Memory Limit: 10000K | |
Total Submissions: 4725 | Accepted: 2135 |
Description
area. These robots move along the walls of the facility and report suspicious observations to the central security office. The only flaw in the system a competitor抯 agent could find is the fact that the robots radio their movements unencrypted. Not being able
to find out more, the agent wants to use that information to calculate the exact size of the area occupied by the new facility. It is public knowledge that all the corners of the building are situated on a rectangular grid and that only straight walls are
used. Figure 1 shows the course of a robot around an example area.

Figure 1: Example area.
You are hired to write a program that calculates the area occupied by the new facility from the movements of a robot along its walls. You can assume that this area is a polygon with corners on a rectangular grid. However, your boss insists that you use a formula
he is so proud to have found somewhere. The formula relates the number I of grid points inside the polygon, the number E of grid points on the edges, and the total area A of the polygon. Unfortunately, you have lost the sheet on which he had written down that
simple formula for you, so your first task is to find the formula yourself.
Input
For each scenario, you are given the number m, 3 <= m < 100, of movements of the robot in the first line. The following m lines contain pairs 揹x dy�of integers, separated by a single blank, satisfying .-100 <= dx, dy <= 100 and (dx, dy) != (0, 0). Such a pair
means that the robot moves on to a grid point dx units to the right and dy units upwards on the grid (with respect to the current position). You can assume that the curve along which the robot moves is closed and that it does not intersect or even touch itself
except for the start and end points. The robot moves anti-clockwise around the building, so the area to be calculated lies to the left of the curve. It is known in advance that the whole polygon would fit into a square on the grid with a side length of 100
units.
Output
by two single blanks. Terminate the output for the scenario with a blank line.
Sample Input
2
4
1 0
0 1
-1 0
0 -1
7
5 0
1 3
-2 2
-1 0
0 -3
-3 1
0 -3
Sample Output
Scenario #1:
0 4 1.0 Scenario #2:
12 16 19.0
分析:
Pick定理:一个计算公式中顶点在格点上的多边形 面积公式 :S=a+b÷2-1,当中a表示多边形内部的点数,b表示多边形边界上的点数。s表示多边形的面积。
如图:例子二
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvemhlbmduYW5sZWU=/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/Center" alt="" style="max-width:100%; border:none">
题目要求输出内部格点个数、边界格点个数、其面积。
1).多边形面积求解公式:
2). 多边形边界上的点数:
两顶点连线构成边界。
两顶点连线中(边界)所经过的点数即为,两顶点分别各自横纵坐标的差的最大公约数。
3)多边形内的点:
inside = area+1 - boundary/2;
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<iostream>
#include<cmath> using namespace std; const int M = 1000 + 5;
int area;
int inside;
int boundary;
int x[M];
int y[M];
int p[M];
int q[M]; int boundary_work(int a, int b)
{
int t;
while( b )
{
t=b;
b=a%b;
a=t;
}
return a;
} int area_work(int a, int b, int c, int d)
{
return (a*d-b*c);
} int main()
{
int n, m;
scanf("%d", &n);
for(int cas=1; cas<=n; cas++)
{
scanf("%d", &m);
p[0]=0; q[0]=0;
inside=0; boundary=0; area=0;
for(int i=1; i<=m; i++)
{
scanf("%d%d", &x[i], &y[i]);
p[i]=p[i-1]+x[i];
q[i]=q[i-1]+y[i];
area += area_work( p[i-1], q[i-1], p[i], q[i] );
boundary += boundary_work( abs(x[i]), abs(y[i]) );
}
inside = area/2+1-boundary/2;
printf("Scenario #%d:\n%d %d %.1f\n\n", cas, inside, boundary, (double(area)/2));
} return 0;
}
POJ 1265:Area的更多相关文章
- poj 1654:Area 区域 ---- 叉积(求多边形面积)
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 19398 Accepted: 5311 利用叉积求多边形面 ...
- poj 1265 Area 面积+多边形内点数
Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 5861 Accepted: 2612 Description ...
- Area POJ - 1265 -皮克定理-叉积
Area POJ - 1265 皮克定理是指一个计算点阵中顶点在格点上的多边形面积公式,该公式可以表示为2S=2a+b-2, 其中a表示多边形内部的点数,b表示多边形边界上的点数,S表示多边形的面积. ...
- POJ 1265 Area (Pick定理 & 多边形面积)
题目链接:POJ 1265 Problem Description Being well known for its highly innovative products, Merck would d ...
- POJ 3321:Apple Tree + HDU 3887:Counting Offspring(DFS序+树状数组)
http://poj.org/problem?id=3321 http://acm.hdu.edu.cn/showproblem.php?pid=3887 POJ 3321: 题意:给出一棵根节点为1 ...
- POJ 3252:Round Numbers
POJ 3252:Round Numbers Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10099 Accepted: 36 ...
- poj 1265 Area【计算几何:叉积计算多边形面积+pick定理计算多边形内点数+计算多边形边上点数】
题目:http://poj.org/problem?id=1265 Sample Input 2 4 1 0 0 1 -1 0 0 -1 7 5 0 1 3 -2 2 -1 0 0 -3 -3 1 0 ...
- poj 1265 Area (Pick定理+求面积)
链接:http://poj.org/problem?id=1265 Area Time Limit: 1000MS Memory Limit: 10000K Total Submissions: ...
- poj 1265 Area( pick 定理 )
题目:http://poj.org/problem?id=1265 题意:已知机器人行走步数及每一步的坐标 变化量 ,求机器人所走路径围成的多边形的面积.多边形边上和内部的点的数量. 思路:1.以 ...
随机推荐
- scrapy运行机制
Scrapy主要包括了以下组件: 引擎(Scrapy)用来处理整个系统的数据流, 触发事务(框架核心) 调度器(Scheduler)用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回 ...
- django使用admin
1.在应用下的admin.py添加 #!/usr/bin/python # coding:utf-8 from django.contrib import admin from .models imp ...
- SQL SERVER 2008 多边形问题的解决
报错内容: 在执行用户定义例程或聚合 "geometry" 期间出现 .NET Framework 错误: System.ArgumentException: 24144: 由于该 ...
- [Visual Studio] SOA服务框架搭建
1.服务框架搭建 2.服务模板创建 3.Nuget引用 4.客户端调用 任务点: 1.分析SOA 2.修改SOA架构名称以及关键字 3.使用Nuget添加引用 4.选择服务模板进行创建 5.尝试调用 ...
- SlickSafe.NET 开源权限框架开发指南
前言:本文适用于快速搭建权限系统的用户,尤其适用于希望有良好定义的权限模型建立:系统解决方案是在基于角色访问控制(RBAC)策略基础上的权限访问模型实现,主要完成了后台权限验证逻辑和前端权限数据验证的 ...
- JS简单实现二级联动菜单
<form method="post" action=""> 省/市:<select id="province" onch ...
- select 语句的执行顺序
select 语句的执行顺序 借用ItZik Ben-Gan.Lubor Kollar.Dejan Sarka所著的<Sql Server 2005 技术内幕:T-SQL查询>的一段话足以 ...
- (provider: 共享内存提供程序, error: 0 - 管道的另一端上无任何进程。) (Microsoft SQL Server,错误: 233)
------------------------------ 无法连接到 IFCA-LIUWEI/SQL2005. ------------------------------其他信息: 已成功与服务 ...
- UVA LIVE-3263 - That Nice Euler Circuit
画一个顶点为偶数的封闭的二维图,当然.这个图能够自交,给出画的过程中的一些轨迹点.求出这个图把二次元分成了几部分,比如三角形把二次元分成了两部分. 这个的话,有图中顶点数+部分数-棱数=2的定律,这是 ...
- 关于Hyper-V备份的四大注意事项
尽管Hyper-V备份相对简单,但备份管理员仍需注意四大问题.这四方面的问题在创建备份时可能不太重要,但在备份恢复时影响甚大. 1.对于虚拟机来说不仅意味着虚拟磁盘 就目前来看,企业在执行Hyper- ...