Description

国家有一个大工程,要给一个非常大的交通网络里建一些新的通道。 
我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上。 
在 2 个国家 a,b 之间建一条新通道需要的代价为树上 a,b 的最短路径。
现在国家有很多个计划,每个计划都是这样,我们选中了 k 个点,然后在它们两两之间 新建 C(k,2)条 新通道。
现在对于每个计划,我们想知道:
1.这些新通道的代价和
2.这些新通道中代价最小的是多少 
3.这些新通道中代价最大的是多少

Input

第一行 n 表示点数。

接下来 n-1 行,每行两个数 a,b 表示 a 和 b 之间有一条边。
点从 1 开始标号。 接下来一行 q 表示计划数。
对每个计划有 2 行,第一行 k 表示这个计划选中了几个点。
第二行用空格隔开的 k 个互不相同的数表示选了哪 k 个点。

Output

输出 q 行,每行三个数分别表示代价和,最小代价,最大代价。

Sample Input

10
2 1
3 2
4 1
5 2
6 4
7 5
8 6
9 7
10 9
5
2
5 4
2
10 4
2
5 2
2
6 1
2
6 1

Sample Output

3 3 3
6 6 6
1 1 1
2 2 2
2 2 2

HINT

n<=1000000

q<=50000并且保证所有k之和<=2*n

Solution

其实这个题的思想不难,就是有些初始化条件和边界条件写起来可能有些淡疼……

首先肯定是要先建出来虚树的……

对于第一问,开个数组$g[i]$,存$i$这个子树往下的所有路径的总长度,记录一下贡献就好了。

对于第二问和第三问,原本求这种我只会记录最长和次长然后做……这次看别的博客学习到了不用这么麻烦QAQ

我们维护一个$Min[i]$,一个$Max[i]$,分别表示这个点往下的最短/最长链。更新代码简单易懂 我也懒得说咋做了

Code

 #include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#define N (1000009)
#define LL long long
using namespace std; struct Edge{int to,next;}edge[N<<];
int n,m,k,u,v,dfs_num;
int a[N],f[N][],DFN[N],Depth[N],vis[N],size[N];
LL g[N],Max[N],Min[N],ans1,ans2,ans3;
int head[N],num_edge; void add(int u,int v)
{
edge[++num_edge].to=v;
edge[num_edge].next=head[u];
head[u]=num_edge;
} void DFS(int x,int fa)
{
f[x][]=fa;
for (int i=; i<=; ++i)
f[x][i]=f[f[x][i-]][i-];
DFN[x]=++dfs_num; Depth[x]=Depth[fa]+;
for (int i=head[x]; i; i=edge[i].next)
if (edge[i].to!=fa) DFS(edge[i].to,x);
} int LCA(int x,int y)
{
if (Depth[x]<Depth[y]) swap(x,y);
for (int i=; i>=; --i)
if (Depth[f[x][i]]>=Depth[y]) x=f[x][i];
if (x==y) return x;
for (int i=; i>=; --i)
if (f[x][i]!=f[y][i]) x=f[x][i], y=f[y][i];
return f[x][];
} struct E{int to,next,len;}EDGE[N<<];
int HEAD[N],NUM_EDGE;
int stack[N],top;
bool cmp(int x,int y) {return DFN[x]<DFN[y];} void ADD(int u,int v)
{
if (u==v) return;//因为我的写法问题所以这里记得特判!
EDGE[++NUM_EDGE].to=v;
EDGE[NUM_EDGE].next=HEAD[u];
EDGE[NUM_EDGE].len=Depth[v]-Depth[u];
HEAD[u]=NUM_EDGE;
} void Insert(int x)
{
if (top==) {stack[++top]=x; return;}
int lca=LCA(x,stack[top]);
if (lca==stack[top]) {stack[++top]=x; return;}
while (top> && DFN[stack[top-]]>=DFN[lca])
ADD(stack[top-],stack[top]), top--;
if (lca!=stack[top]) ADD(lca,stack[top]), stack[top]=lca;
stack[++top]=x;
} void Build()
{
stack[top=]=;
for (int i=; i<=k; ++i) Insert(a[i]);
while (top>=) ADD(stack[top-],stack[top]), top--;
} void DP(int x)
{
size[x]=vis[x]; g[x]=;
Min[x]=vis[x]?:2e9;
Max[x]=vis[x]?:-2e9;
for (int i=HEAD[x]; i; i=EDGE[i].next)
{
int y=EDGE[i].to;
DP(y);
ans1+=(LL)size[x]*size[y]*EDGE[i].len+g[x]*size[y]+g[y]*size[x];
size[x]+=size[y];
g[x]+=g[y]+(LL)EDGE[i].len*size[y];
ans2=min(ans2,Min[x]+Min[y]+EDGE[i].len);
ans3=max(ans3,Max[x]+Max[y]+EDGE[i].len);
Min[x]=min(Min[x],Min[y]+EDGE[i].len);
Max[x]=max(Max[x],Max[y]+EDGE[i].len);
}
HEAD[x]=;
} int main()
{
scanf("%d",&n);
for (int i=; i<=n-; ++i)
{
scanf("%d%d",&u,&v);
add(u,v); add(v,u);
}
DFS(,);
scanf("%d",&m);
for (int i=; i<=m; ++i)
{
scanf("%d",&k);
for (int j=; j<=k; ++j)
scanf("%d",&a[j]), vis[a[j]]=;
sort(a+,a+k+,cmp);
NUM_EDGE=; ans1=; ans2=2e9; ans3=-2e9;
Build(); DP();
printf("%lld %lld %lld\n",ans1,ans2,ans3);
for (int j=; j<=k; ++j) vis[a[j]]=;
}
}

BZOJ3611:[HEOI2014]大工程(树形DP,虚树)的更多相关文章

  1. [BZOJ3611] [Heoi2014]大工程(DP + 虚树)

    传送门 $dp[i][0]$表示节点i到子树中的所有点的距离之和 $dp[i][1]$表示节点i到子树中最近距离的点的距离 $dp[i][2]$表示节点i到子树中最远距离的点的距离 建好虚树后dp即可 ...

  2. 3611: [Heoi2014]大project|树形DP|虚树

    构建出虚树然后DP统计答案 自己写的DP太傻QAQ,各种WA 膜了一发PoPoQQQ大爷的DP方法 mxdis,mndis分别表示到当前点近期和最远的被选出来的点的距离 mx,mn分别表示在以当前点为 ...

  3. [BZOJ3611][Heoi2014]大工程

    [BZOJ3611][Heoi2014]大工程 试题描述 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道.  我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上.  在 ...

  4. [BZOJ3611][Heoi2014]大工程(虚树上DP)

    3611: [Heoi2014]大工程 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 2464  Solved: 1104[Submit][Statu ...

  5. [Bzoj3611][Heoi2014]大工程(虚树)

    3611: [Heoi2014]大工程 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 2000  Solved: 837[Submit][Status ...

  6. BZOJ2286 [Sdoi2011]消耗战 和 BZOJ3611 [Heoi2014]大工程

    2286: [Sdoi2011]消耗战 Time Limit: 20 Sec  Memory Limit: 512 MBSubmit: 6371  Solved: 2496[Submit][Statu ...

  7. BZOJ3611 [Heoi2014]大工程 【虚树】

    题目 国家有一个大工程,要给一个非常大的交通网络里建一些新的通道. 我们这个国家位置非常特殊,可以看成是一个单位边权的树,城市位于顶点上. 在 2 个国家 a,b 之间建一条新通道需要的代价为树上 a ...

  8. 虚树(Bzoj3611: [Heoi2014]大工程)

    题面 传送门 虚树 把跟询问有关的点拿出来建树,为了方便树\(DP\) 在\(LCA\)处要合并答案,那么把这些点的\(LCA\)也拿出来 做法:把点按\(dfs\)序排列,然后求出相邻两个点的\(L ...

  9. 算法笔记--树的直径 && 树形dp && 虚树 && 树分治 && 树上差分 && 树链剖分

    树的直径: 利用了树的直径的一个性质:距某个点最远的叶子节点一定是树的某一条直径的端点. 先从任意一顶点a出发,bfs找到离它最远的一个叶子顶点b,然后再从b出发bfs找到离b最远的顶点c,那么b和c ...

随机推荐

  1. Spring boot --- Spring Oauth(三)

    本节将学习 spring security oauth  实现单点登录 概述 首先我们来了解什么是单点登录.看下面两张图就明白了. 很明显,单点登录最重要解决的就是登录和注销的功能,今天的例子,可以用 ...

  2. git 拉取远程分支报错(fatal: '' is not a commit and a branch '' cannot be created from it)

    问题描述从远程git上拉取某一个分支,然后报错,拉取不了这个分支. 拉取分支的命令: git checkout -b xxx-static-19 origin/xxx-static-19 其中xxx- ...

  3. .net core 2.2 部署CentOS7(2)给虚拟机安装CentOS7

    目录: .net core 2.2 部署CentOS7(1)安装虚拟机 .net core 2.2 部署CentOS7(2)给虚拟机安装CentOS7 .net core 2.2 部署CentOS7( ...

  4. Fork/Join

    Fork/Join框架是Java7提供了的一个用于并行执行任务的框架, 是一个把大任务分割成若干个小任务,最终汇总每个小任务结果后得到大任务结果的框架. 我们再通过Fork和Join这两个单词来理解下 ...

  5. 【学习笔记】--- 老男孩学Python,day18 面向对象------ 属性,类方法,静态方法

    属性 属性: 将方法伪装成一个属性,代码上没有什么提升,只是更合理. 应用场景: 类中 要用名词时候可以用@property  比如,求面积,周长,平方,体脂 等运算时候 例如:   bmi是名词,最 ...

  6. jQuery基础(样式篇,DOM对象,选择器,属性样式)

      1. $(document).ready 的作用是等页面的文档(document)中的节点都加载完毕后,再执行后续的代码,因为我们在执行代码的时候,可能会依赖页面的某一个元素,我们要确保这个元素真 ...

  7. OpenGL学习--06--键盘与鼠标交互

    1.tutorial06.cpp // Include standard headers #include <stdio.h> #include <stdlib.h> // I ...

  8. flutter圆角效果的实现

    new Material( borderRadius: BorderRadius.circular(20.0), shadowColor: Colors.blue.shade200, elevatio ...

  9. solr学习笔记

    目录 前言 linux部署 使用 配置 使用 前言 solr是apach基于Lucene开发的成熟的框架,这里我们学习如何部署.使用.关于集群会在后面继续添加 linux部署 mkdir /usr/l ...

  10. tls/ssl工作原理及相关技术

    https://www.wosign dot com/faq/faq2016-0309-03.htm TLS/SSL的功能实现主要依赖于三类基本算法:散列函数 Hash.对称加密和非对称加密,其利用非 ...