【Codeforces 949D】Shake It! 【动态规划】
参考: http://blog.csdn.net/gjghfd/article/details/77824901

所求的是满足条件的图中“不同构”的数量,意味着操作的顺序是可以忽略的。考虑若干次操作后得到的一个“World” G,其中某次操作(s(G), t(G))生成的节点为w,则由s(G)到w和由w到t(G)的所有路径及途径点生成的两个子图分别符合“World”的定义。
这意味着我们可以将一个“World”分割成若干个子问题来求解。
不妨令F(N, M)表示经N次操作后得到的s(G)与t(G)之间最小割为M的所有不同构的G的数量。考虑N次操作中所有基于u=s(G), v=t(G)的操作生成的子“world”,如图所示:

则有$$N = \sum_i (a_i + c_i + 1) \\ M = \sum_i \min\{b, d\} $$
这样我们就可以类比背包问题的求解过程,从小到大依次求出g(i, j),并用g(i, j)更新F的答案。
考虑当前要将t组在g(i, j)中的“子世界对”放入背包,而F(x,y)是尚未考虑将g(i, j)作为子世界的情况的世界数量,那么状态转移的过程就相当于在g(i,j)中可重复地选取t个子世界对,使得总操作数变为x+t*i,总割集变为y+t*j。由于“同构”的定义不考虑操作的顺序,上述转移的方案数应为$\binom{g(i, j) + t - 1}{t} $
即状态转移为$$F(x, y) \cdot \binom{g(i, j) + t - 1}{t} \Longrightarrow F(x+t*i, y+t*j)$$
By Asm.Def, contest: Codeforces Round # (Div. ), problem: (D) Shake It!, Accepted, # #include <bits/stdc++.h>
using namespace std;
const int maxn = , mod = ;
typedef long long LL;
int N, M, F[maxn][maxn], G[maxn][maxn], inv[maxn]; void init()
{
scanf("%d%d", &N, &M);
inv[] = ;
for(int i = ;i < maxn;++i)
inv[i] = LL(mod-mod/i) * inv[mod%i] % mod;
}
void work()
{
F[][] = ;
for(int i = ;i <= N;++i) for(int j = ;j < maxn;++j)
{
for(int a = ;a < i;++a)
{
G[i][j] = (G[i][j] + (LL) F[a][j] * F[i--a][j]) % mod;
for(int b = j+;b <= i+ && b < maxn;++b)
{
G[i][j] = (G[i][j] + (LL) F[a][b] * F[i--a][j]) % mod;
G[i][j] = (G[i][j] + (LL) F[a][j] * F[i--a][b]) % mod;
}
}
//get G[i][j]
for(int x = N-;x >= ;--x) for(int y = ;y < maxn;++y) if(F[x][y])
{
int C = ;
for(int t = ;x+t*i <= N && y+t*j < maxn;++t)
{
C = (LL) C * (G[i][j]-+t) % mod * inv[t] % mod;
F[x+t*i][y+t*j] = (F[x+t*i][y+t*j] + (LL) F[x][y] * C) % mod;
}
}
}
printf("%d\n", F[N][M]);
}
int main()
{
init();
work();
return ;
}
动态规划
【Codeforces 949D】Shake It! 【动态规划】的更多相关文章
- Codeforces 839C Journey - 树形动态规划 - 数学期望
There are n cities and n - 1 roads in the Seven Kingdoms, each road connects two cities and we can r ...
- Codeforces 834D The Bakery - 动态规划 - 线段树
Some time ago Slastyona the Sweetmaid decided to open her own bakery! She bought required ingredient ...
- Codeforces 837D Round Subset - 动态规划 - 数论
Let's call the roundness of the number the number of zeros to which it ends. You have an array of n ...
- CodeForces 623E Transforming Sequence 动态规划 倍增 多项式 FFT 组合数学
原文链接http://www.cnblogs.com/zhouzhendong/p/8848990.html 题目传送门 - CodeForces 623E 题意 给定$n,k$. 让你构造序列$a( ...
- Codeforces 101623E English Restaurant - 动态规划
题目传送门 传送门 题目大意 餐厅有$n$张桌子,第$i$张桌子可以容纳$c_i$个人,有$t$组客人,每组客人的人数等概率是$[1, g]$中的整数. 每来一组人数为$x$客人,餐厅如果能找到最小的 ...
- Codeforces 264C Choosing Balls 动态规划
原文链接https://www.cnblogs.com/zhouzhendong/p/CF264C.html 题目传送门 - CF264C 题意 给定一个有 $n$ 个元素的序列,序列的每一个元素是个 ...
- Codeforces 1000G Two-Paths 树形动态规划 LCA
原文链接https://www.cnblogs.com/zhouzhendong/p/9246484.html 题目传送门 - Codeforces 1000G Two-Paths 题意 给定一棵有 ...
- codeforces 17C Balance(动态规划)
codeforces 17C Balance 题意 给定一个串,字符集{'a', 'b', 'c'},操作是:选定相邻的两个字符,把其中一个变成另一个.可以做0次或者多次,问最后可以生成多少种,使得任 ...
- Codeforces 762D Maximum path 动态规划
Codeforces 762D 题目大意: 给定一个\(3*n(n \leq 10^5)\)的矩形,从左上角出发到右下角,规定每个格子只能经过一遍.经过一个格子会获得格子中的权值.每个格子的权值\(a ...
随机推荐
- 基于NIO的同步非阻塞编程完整案例,客户端发送请求,服务端获取数据并返回给客户端数据,客户端获取返回数据
这块还是挺复杂的,挺难理解,但是多练几遍,多看看研究研究其实也就那样,就是一个Selector轮询的过程,这里想要双向通信,客户端和服务端都需要一个Selector,并一直轮询, 直接贴代码: Ser ...
- 【CTF WEB】文件包含
文件包含 题目要求: 请找到题目中FLAG 漏洞源码 <meta charset='utf-8'> <center><h1>文件阅读器</h1>< ...
- 建立ARM交叉编译环境 (arm-none-linux-gnueabi-gcc with EABI)【转】
转自:http://lib.csdn.net/article/embeddeddevelopment/60172?knId=886 建立ARM交叉编译环境 (arm-none-linux-gnueab ...
- 阿里云slb+https 实践操作练习
如果只是练习按照文档步骤逐步执行即可. 如果是业务需要,只供参考. 有道笔记链接->
- 33 Introducing the Go Race Detector
Introducing the Go Race Detector 26 June 2013 Introduction Race conditions are among the most insidi ...
- luoguP2735 电网 Electric Fences
一道校内模拟赛遇见的题 ** 不会正解就真的很麻烦的 数学题 ** 有一种东西叫 皮克定理 发现的千古神犇: 姓名:George Alexander Pick(所以叫皮克定理呀 国籍:奥地利(蛤!竟然 ...
- Spring整合junit测试
本节内容: Spring整合junit测试的意义 Spring整合junit测试 一.Spring与整合junit测试的意义 在没整合junit之前,我们在写测试方法时,需要在每个方法中手动创建容器, ...
- CCF CSP 201709-1 打酱油
CCF计算机职业资格认证考试题解系列文章为meelo原创,请务必以链接形式注明本文地址 CCF CSP 201709-1 打酱油 问题描述 小明带着N元钱去买酱油.酱油10块钱一瓶,商家进行促销,每买 ...
- day8--by a gentlement man
1.着装得体(不要国产.不要Jack&Johnson.selected),人都是势利眼,高素质和低素质人的区别,高素质是心里明白歧视你,但是不说:低素质是直接表示出来:lower,屌丝 ...
- swftools中的pdf2swf转换Error overflow ID 65535 解决办法
近几日因为项目需要在线转换pdf到swf实现电子期刊阅读,用到了这个工具,版本是:swftools-0.9.2.tar.gz 当然也遇到了很头疼的问题,那就是在转换pdf中色彩图形比较复杂的页时会抛出 ...