[折半搜索][哈希]POJ1186方程的解数
这道题明显N数据范围非常小,但是M很大,所以用折半搜索实现搜索算法的指数级优化,将复杂度优化到O(M^(N/2))。
将搜出的两半结果用哈希的方式合并(乘法原理)。
Code:
#include <cstdio>
#include <algorithm>
#define Kss 10000000
using namespace std; int N,hf,kl[],kr[],pl[],pr[],M;
int Gl[Kss],Gr[Kss],Cl,Cr; int ksm(int x,int y){int Res=;while(y){if(y&)Res*=x;x*=x;y>>=;}return Res;} void searchl(int x,int tot){
if(x==hf+){Gl[++Cl]=tot;return ;}
for(int i=;i<=M;i++)searchl(x+,tot+kl[x]*ksm(i,pl[x]));
} void searchr(int x,int tot){
if(x==N-hf+){Gr[++Cr]=tot;return ;}
for(int i=;i<=M;i++)searchr(x+,tot+kr[x]*ksm(i,pr[x]));
} int Ans=;
int hs[Kss],Cts[Kss]; void hash(int x){int k=x>?x:-x;k%=Kss;while(hs[k]!=x&&hs[k]!=-2e9)k=k%Kss+;hs[k]=x,Cts[k]++;}
int find(int x){int k=x>?x:-x;k%=Kss;while(hs[k]!=x&&hs[k]!=-2e9)k=k%Kss+;return Cts[k];} int main()
{
scanf("%d%d",&N,&M);
for(int i=;i<Kss;i++)hs[i]=-2e9;
hf=N>>;
for(int i=;i<=hf;i++)scanf("%d%d",&kl[i],&pl[i]);
for(int i=;i<=N-hf;i++)scanf("%d%d",&kr[i],&pr[i]);
searchl(,),searchr(,);
for(int i=;i<=Cr;i++)Gr[i]=-Gr[i];
for(int i=;i<=Cl;i++)hash(Gl[i]);
for(int i=;i<=Cr;i++)Ans+=find(Gr[i]);
printf("%d",Ans);
return ;
}
[折半搜索][哈希]POJ1186方程的解数的更多相关文章
- 算法复习——哈希表+折半搜索(poj2549)
搬讲义~搬讲义~ 折半搜索感觉每次都是打暴力时用的啊2333,主要是用于降次··当复杂度为指数级别时用折半可以减少大量复杂度··其实专门考折半的例题并不多···一般都是中途的一个小优化··· 然后折半 ...
- 【NOI2001】方程的解数 题解(dfs+哈希)
题目描述 已知一个方程 k1*x1^p1+k2*x2^p2……+kn*xn^pn=0. 求解的个数.其中1<=x<=150,1<=p<=6; 答案在int范围内 输入格式 第一 ...
- poj 1186 方程的解数【折半dfs+hash】
折半搜索,map会T所以用hash表来存状态 #include<iostream> #include<cstdio> #include<map> using nam ...
- [ NOI 2001 ] 方程的解数
\(\\\) \(Description\) 已知一个 \(N\) 元高次方程: \[ k_1x_1^{p_1}+k_2x_2^{p_2}+...+k_nx_n^{p_n}=0 \] 要求所有的 \( ...
- NOI2001 方程的解数
1735 方程的解数 http://codevs.cn/problem/1735/ 2001年NOI全国竞赛 时间限制: 5 s 空间限制: 64000 KB 题目描述 Descripti ...
- bzoj1770: [Usaco2009 Nov]lights 燈(折半搜索)
1770: [Usaco2009 Nov]lights 燈 Time Limit: 10 Sec Memory Limit: 64 MBSubmit: 1153 Solved: 564[Submi ...
- 折半搜索+Hash表+状态压缩 | [Usaco2012 Open]Balanced Cow Subsets | BZOJ 2679 | Luogu SP11469
题面:SP11469 SUBSET - Balanced Cow Subsets 题解: 对于任意一个数,它要么属于集合A,要么属于集合B,要么不选它.对应以上三种情况设置三个系数1.-1.0,于是将 ...
- POJ 1186 方程的解数
方程的解数 Time Limit: 15000MS Memory Limit: 128000K Total Submissions: 6188 Accepted: 2127 Case Time ...
- 计蒜客 方程的解数 dfs
题目: https://www.jisuanke.com/course/2291/182237 思路: 来自:https://blog.csdn.net/qq_29980371/article/det ...
随机推荐
- Django之模型注册
接着上一篇:Django之创建项目 目的:一个空项目创建好了,我们在models.py中新增3张表并在admin界面中显示,并能操作它们. 示例models 编辑models.py # -*- cod ...
- Redis学习---CentOs/RedHat下Redis的安装
redis是C语言开发,建议在linux上运行,本教程使用Centos6.4作为安装环境. 安装redis需要先将官网下载的源码进行编译,编译依赖gcc环境,如果没有gcc环境,需要安装gc ...
- 解决Failed to load the JNI shared library xxx/xxx/jvm.dll 错误
原因:jdk发生变化(新装了32位jdk),eclipse在启动时使用了 系统环境变量中的jdk路径(32位). 解决:只要把旧的64位的jre路径指定给eclipse启动文件即可. 在eclipse ...
- 【Alpha】Daily Scrum Meeting——blog2
团队成员 吴吉键 201421122007(组长) 魏修祺 201421122008 孙劲林 201421122022 1. 会议当天照片 忘记拍了!(没有拍照片的习惯,没有第四人拍照) 2. 每个人 ...
- Maven实战(十)利用 Nexus 来构建企业级 Maven 仓库
目录 一.简介 Nexus是Maven仓库管理器,用来搭建一个本地仓库服务器,这样做的好处是便于管理,节省网络资源,速度快,还有一个非常有用的功能就是可以通过项目的SNAPSHOT版本管理,来进行模块 ...
- 算法题:整形数组找a和b使得a+b=n
题目: 数组 A 由 1000 万个随机正整数 (int) 组成,设计算法,给定整数 n,在 A 中找出 a 和 b,使其符合如下等式: n = a + b 解题思路: 1. 1000w个随机正整数占 ...
- bzoj1808 [Ioi2007]training 训练路径
Description 马克(Mirko)和斯拉夫克(Slavko)正在为克罗地亚举办的每年一次的双人骑车马拉松赛而紧张训练.他们需要选择一条训练路径. 他们国家有N个城市和M条道路.每条道路连接两个 ...
- jmeter验证WEB页面的href链接请求
1. 第一步: 创建Samper_HTTP请求,打开测试页面 2. 第二步: 创建后置处理器_正则表达式(也有其他方式,这里仅介绍正则) 如图 3. 第三步 创建逻辑控制器_ForEach控制器,配置 ...
- 关于Koala 中文编译出错
关于koala: 我们知道koala是一个前端预处理器语言图形编译工具,支持Less.Sass.Compass.CoffeeScript,帮助web开发者更高效地使用它们进行开发.跨平台运行,完美兼容 ...
- python matplotlib quiver——画箭头、风场
理解参考:https://blog.csdn.net/liuchengzimozigreat/article/details/84566650 以下实例 import numpy as np impo ...