Writable、WritableComparable和comparators
hadoop的序列化格式
- package org.apache.hadoop.io;
- public interface Writable {
- void write(java.io.DataOutput p1) throws java.io.IOException;
- void readFields(java.io.DataInput p1) throws java.io.IOException;
- }
- package com.sweetop.styhadoop;
- import junit.framework.Assert;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.Writable;
- import org.apache.hadoop.util.StringUtils;
- import org.junit.Before;
- import org.junit.Test;
- import java.io.*;
- /**
- * Created with IntelliJ IDEA.
- * User: lastsweetop
- * Date: 13-7-4
- * Time: 下午10:25
- * To change this template use File | Settings | File Templates.
- */
- public class TestWritable {
- byte[] bytes=null;
- /**
- * 初始化一个IntWritable实例,并且调用系列化方法
- * @throws IOException
- */
- @Before
- public void init() throws IOException {
- IntWritable writable = new IntWritable(163);
- bytes = serialize(writable);
- }
- /**
- * 一个IntWritable序列号后的四个字节的字节流
- * 并且使用big-endian的队列排列
- * @throws IOException
- */
- @Test
- public void testSerialize() throws IOException {
- Assert.assertEquals(bytes.length,4);
- Assert.assertEquals(StringUtils.byteToHexString(bytes),"000000a3");
- }
- /**
- * 创建一个没有值的IntWritable对象,并且通过调用反序列化方法将bytes的数据读入到它里面
- * 通过调用它的get方法,获得原始的值,163
- */
- @Test
- public void testDeserialize() throws IOException {
- IntWritable newWritable = new IntWritable();
- deserialize(newWritable,bytes);
- Assert.assertEquals(newWritable.get(),163);
- }
- /**
- * 将一个实现了Writable接口的对象序列化成字节流
- * @param writable
- * @return
- * @throws IOException
- */
- public static byte[] serialize(Writable writable) throws IOException {
- ByteArrayOutputStream out = new ByteArrayOutputStream();
- DataOutputStream dataOut = new DataOutputStream(out);
- writable.write(dataOut);
- dataOut.close();
- return out.toByteArray();
- }
- /**
- * 将字节流转化为实现了Writable接口的对象
- * @param writable
- * @param bytes
- * @return
- * @throws IOException
- */
- public static byte[] deserialize(Writable writable,byte[] bytes) throws IOException {
- ByteArrayInputStream in=new ByteArrayInputStream(bytes);
- DataInputStream dataIn = new DataInputStream(in);
- writable.readFields(dataIn);
- dataIn.close();
- return bytes;
- }
- }
WritableComparable和comparators
- package org.apache.hadoop.io;
- public interface WritableComparable <T> extends org.apache.hadoop.io.Writable, java.lang.Comparable<T> {
- }
MapReduce在排序部分要根据key值的大小进行排序,因此类型的比较相当重要,RawComparator是Comparator的增强版
- package org.apache.hadoop.io;
- public interface RawComparator <T> extends java.util.Comparator<T> {
- int compare(byte[] bytes, int i, int i1, byte[] bytes1, int i2, int i3);
- }
它可以做到,不先反序列化就可以直接比较二进制字节流的大小:
- package com.sweetop.styhadoop;
- import org.apache.hadoop.io.IntWritable;
- import org.apache.hadoop.io.RawComparator;
- import org.apache.hadoop.io.Writable;
- import org.apache.hadoop.io.WritableComparator;
- import org.eclipse.jdt.internal.core.Assert;
- import org.junit.Before;
- import org.junit.Test;
- import java.io.ByteArrayOutputStream;
- import java.io.DataOutputStream;
- import java.io.IOException;
- /**
- * Created with IntelliJ IDEA.
- * User: lastsweetop
- * Date: 13-7-5
- * Time: 上午1:26
- * To change this template use File | Settings | File Templates.
- */
- public class TestComparator {
- RawComparator<IntWritable> comparator;
- IntWritable w1;
- IntWritable w2;
- /**
- * 获得IntWritable的comparator,并初始化两个IntWritable
- */
- @Before
- public void init() {
- comparator = WritableComparator.get(IntWritable.class);
- w1 = new IntWritable(163);
- w2 = new IntWritable(76);
- }
- /**
- * 比较两个对象大小
- */
- @Test
- public void testComparator() {
- Assert.isTrue(comparator.compare(w1, w2) > 0);
- }
- /**
- * 序列号后进行直接比较
- * @throws IOException
- */
- @Test
- public void testcompare() throws IOException {
- byte[] b1 = serialize(w1);
- byte[] b2 = serialize(w2);
- Assert.isTrue(comparator.compare(b1, 0, b1.length, b2, 0, b2.length) > 0);
- }
- /**
- * 将一个实现了Writable接口的对象序列化成字节流
- *
- * @param writable
- * @return
- * @throws java.io.IOException
- */
- public static byte[] serialize(Writable writable) throws IOException {
- ByteArrayOutputStream out = new ByteArrayOutputStream();
- DataOutputStream dataOut = new DataOutputStream(out);
- writable.write(dataOut);
- dataOut.close();
- return out.toByteArray();
- }
- }
Writable、WritableComparable和comparators的更多相关文章
- hadoop中的序列化与Writable接口
本文地址:http://www.cnblogs.com/archimedes/p/hadoop-writable-interface.html,转载请注明源地址. 简介 序列化和反序列化就是结构化对象 ...
- Hadoop开发相关问题
总结自己在Hadoop开发中遇到的问题,主要在mapreduce代码执行方面.大部分来自日常代码执行错误的解决方法,还有一些是对Java.Hadoop剖析.对于问题,通过查询stackoverflow ...
- 分别使用Hadoop和Spark实现二次排序
零.序(注意本部分与标题无太大关系,可直接调至第一部分) 既然没用为啥会有序?原因不想再开一篇文章,来抒发点什么感想或者计划了,就在这里写点好了: 前些日子买了几本书,打算学习和研究大数据方面的知识, ...
- 02Hadoop二次排序2
案例: 数据: 邮编 | 日期 |金额 ILMN,2013-12-05,97.65GOOD,2013-12-09,1078.14IBM,2013-12-09,177.46ILMN, ...
- 01Hadoop二次排序
我的目的: 示例: 2012,01,01,352011,12,23,-42012,01,01,432012,01,01,232011,12,23,52011,4,1,22011,4,1,56 结果: ...
- 解读:MultipleOutputs类
//MultipleOutputs类用于简化多文件输出The MultipleOutputs class simplifies writing output data to multiple outp ...
- 详细讲解MapReduce二次排序过程
我在15年处理大数据的时候还都是使用MapReduce, 随着时间的推移, 计算工具的发展, 内存越来越便宜, 计算方式也有了极大的改变. 到现在再做大数据开发的好多同学都是直接使用spark, hi ...
- 二次排序问题(分别使用Hadoop和Spark实现)
不多说,直接上干货! 这篇博客里的算法部分的内容来自<数据算法:Hadoop/Spark大数据处理技巧>一书,不过书中的代码虽然思路正确,但是代码不完整,并且只有java部分的编程,我在它 ...
- 自定义Writable、RawComparatorWritable、comparators(转)
自定义Writable hadoop虽然已经实现了一些非常有用的Writable,而且你可以使用他们的组合做很多事情,但是如果你想构造一些更加复杂的结果,你可以自定义Writable来达到你的目的,我 ...
随机推荐
- Magento添加一个下拉登陆菜单Create Magento Dropdown Login in a few minutes
Dropdown login forms are not a feature many online stores use, but in some cases they could be quite ...
- 链表之求链表倒数第k个节点
题目描述:输入一个单向链表,输出该链表中倒数第k个节点,链表的倒数第0个节点为链表的尾指针. 最普遍的方法是,先统计单链表中结点的个数,然后再找到第(n-k)个结点.注意链表为空,k为0,k为1,k大 ...
- Java的浮点数和整数的进制转换
整数的表达 –原码:第一位为符号位(0为正数,1为负数) –反码:符号位不动,原码取反 –负数补码:符号位不动,反码加1 –正数补码:和原码相同 -6 5 原码 10000110 0 ...
- Android ListView与ExpandableListView设置分割线divider
listview设置分割线需要以下操作: lv.setDivider(getResources().getDrawable(R.drawable.diyline)); ExpandableListVi ...
- PHP加密解密字符串
项目中有时我们需要使用PHP将特定的信息进行加密,也就是通过加密算法生成一个加密字符串,这个加密后的字符串可以通过解密算法进行解密,便于程序对解密后的信息进行处理. 最常见的应用在用户登录以及一些AP ...
- Android --Android Stuido混淆签名打包
参考博客:Android studio 使用心得(五)—代码混淆和破解apk 参考博客:Android studio 使用心得(四)---android studio 多渠道打包 参考博客:Andro ...
- 用仿ActionScript的语法来编写html5——第七篇,自定义按钮
第七篇,自定义按钮这次弄个简单点的,自定义按钮.其实,有了前面所定义的LSprite,LBitmap等类,定义按钮就很方便了.下面是添加按钮的代码, function gameInit(event){ ...
- SpringJUnit4ClassRunner拉起来的单元测试怎么装配Container实例
由于历史代码的原因,产品中部分spring装配的实例需要通过Container的实现类(自定义的)去获取.那么当在单元测试中怎么实例化这个Container实现呢? 实例化Container实现需要A ...
- mysql explain输出中type的取值说明
原文: http://www.cnitblog.com/aliyiyi08/archive/2008/09/09/48878.html 这列很重要,显示了连接使用了哪种连接类别,有无使用索引. 从最好 ...
- NSData
NSArray *pathArray = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory, NSUserDomainMask, YES) ...