【poj2079】 Triangle
http://poj.org/problem?id=2079 (题目链接)
题意
求凸包内最大三角形面积
Solution
旋转卡壳。
只会n²的做法,但是竟然过了。就是枚举每一个点,然后旋转卡壳另外两个点。先固定i,j这2个邻接的顶点。然后找出使三角形面积最大的那个k点。然后再固定i,枚举j点,由于k点是随着j点的变化在变化,所以k点不必从开头重新枚举。
之后去网上看了下O(n)的做法,当时就感觉有点鬼,打了一遍交上去Wa了,鬼使神差拍出一组数据好像可以把网上O(n)的做法全部卡掉,但是我也还搞不清为什么这样做是错的。
数据:
5
-7 0
-5 1
-1 5
-2 8
5
0 7
1 5
5 1
8 2
4 8
5
0 -7
4 -8
8 -2
5 -1
1 -5
-1
这3个数据都是同一个凸包,面积都是15.00。
O(n)代码
// poj2079
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#define esp 1e-8
#define inf 2147483640
#define LL long long
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=50010;
struct point {int x,y;}p[maxn],p0; int cross(point p0,point p1,point p2) {
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double dis(point a,point b) {
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool cmp(point a,point b) {
int t=cross(p0,a,b);
if (t>0) return 1;
if (t<0) return 0;
return dis(p0,a)<dis(p0,b);
}
int Graham(int n) {
if (n==1) return 1;
int k=1,top=2;
for (int i=1;i<=n;i++)
if (p[i].y==p[k].y ? p[i].x<p[k].x : p[i].y<p[k].y) k=i;
p0=p[k];p[k]=p[1];p[1]=p0;
sort(p+2,p+1+n,cmp);
for (int i=3;i<=n;i++) {
while (top>1 && cross(p[top-1],p[top],p[i])<=0) top--;
p[++top]=p[i];
}
return top;
}
double RC(int n) {
int ans=0;
p[n+1]=p[1];
int i=1,j=2,k=3,t;
while (k!=1) {
int ii=i,jj=j,kk=k;
while ((t=abs(cross(p[i],p[k],p[j])))<abs(cross(p[i],p[k+1],p[j]))) k=k%n+1;
ans=max(ans,t);
while ((t=abs(cross(p[i],p[k],p[j])))<abs(cross(p[i],p[k],p[j+1]))) j=j%n+1;
ans=max(ans,t);
while ((t=abs(cross(p[i],p[k],p[j])))<abs(cross(p[i+1],p[k],p[j]))) i=i%n+1;
ans=max(ans,t);
if (ii==i && jj==j && kk==k) k=k%n+1;
}
return (double)ans/2.0;
}
int main() {
int n;
while (scanf("%d",&n)!=EOF && n>0) {
for (int i=1;i<=n;i++) scanf("%d%d",&p[i].x,&p[i].y);
n=Graham(n);
printf("%.2f\n",RC(n));
}
return 0;
}
O(n²)代码
// poj2079
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdlib>
#include<cstdio>
#include<cmath>
#include<map>
#define esp 1e-8
#define inf 2147483640
#define LL long long
#define Pi acos(-1.0)
#define free(a) freopen(a".in","r",stdin);freopen(a".out","w",stdout);
using namespace std;
inline LL getint() {
LL x=0,f=1;char ch=getchar();
while (ch>'9' || ch<'0') {if (ch=='-') f=-1;ch=getchar();}
while (ch>='0' && ch<='9') {x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int maxn=50010;
struct point {int x,y;}p[maxn],p0; int cross(point p0,point p1,point p2) {
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double dis(point a,point b) {
return sqrt((double)(a.x-b.x)*(a.x-b.x)+(a.y-b.y)*(a.y-b.y));
}
bool cmp(point a,point b) {
int t=cross(p0,a,b);
if (t>0) return 1;
if (t<0) return 0;
return dis(p0,a)<dis(p0,b);
}
int Graham(int n) {
if (n==1) return 1;
int k=1,top=2;
for (int i=1;i<=n;i++)
if (p[i].y==p[k].y ? p[i].x<p[k].x : p[i].y<p[k].y) k=i;
p0=p[k];p[k]=p[1];p[1]=p0;
sort(p+2,p+1+n,cmp);
for (int i=3;i<=n;i++) {
while (top>1 && cross(p[top-1],p[top],p[i])<=0) top--;
p[++top]=p[i];
}
return top;
}
double RC(int n) {
int ans=0;
p[n+1]=p[1];
for (int i=1;i<=n;i++) {
int j=i%n+1,k=(i+1)%n+1;
while (abs(cross(p[i],p[j],p[k]))<abs(cross(p[i],p[j],p[k+1]))) k=k%n+1;
while (i!=j && i!=k) {
ans=max(ans,abs(cross(p[i],p[j],p[k])));
while (abs(cross(p[i],p[j],p[k]))<abs(cross(p[i],p[j],p[k+1]))) k=k%n+1;
j=j%n+1;
}
}
return (double)ans/2.0;
}
int main() {
int n;
while (scanf("%d",&n)!=EOF && n>0) {
for (int i=1;i<=n;i++) scanf("%d%d",&p[i].x,&p[i].y);
n=Graham(n);
printf("%.2f\n",RC(n));
}
return 0;
}
【poj2079】 Triangle的更多相关文章
- 【LeetCode】Triangle 解决报告
[称号] Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjac ...
- 【leetcode】Triangle (#120)
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- 【leetcode】triangle(easy)
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- 【Leetcode】Triangle
给定一个由数字组成的三角形,从顶至底找出路径最小和. Given a triangle, find the minimum path sum from top to bottom. Each step ...
- 【数组】Triangle
题目: Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjace ...
- 【Leetcode】【Medium】Triangle
Given a triangle, find the minimum path sum from top to bottom. Each step you may move to adjacent n ...
- 【poj1085】 Triangle War
http://poj.org/problem?id=1085 (题目链接) 题意 A,B两人玩游戏,在一个大三角形上放火柴,若A放上一根火柴后成功组成一个三角形,那么这个三角形就归属于A,并且A被奖励 ...
- 【计数】【UVA11401】 Triangle Counting
传送门 Description 把1……n这n个数中任取3个数,求能组成一个三角形的方案个数 Input 多组数据,对于每组数据,包括: 一行一个数i,代表前i个数. 输入结束标识为i<3. O ...
- 【HDOJ6300】Triangle Partition(极角排序)
题意:给定3n个点,保证没有三点共线,要求找到一组点的分组方案使得它们组成的三角形之间互不相交. n<=1e3 思路:以y为第一关键字,x为第二关键字,按x递减,y递增排序 #include&l ...
随机推荐
- DragRigidbody2D
组件源码 using UnityEngine; using System.Collections; //This script allows to drag rigidbody2D elements ...
- Windows 2008 R2 配置 DNS 实现二级域名
本文内容 域名解析 准备工作 安装 DNS 服务器 建立 DNS 区域 建立主机头 服务器网络设置 测试二级域名 IIS 建立 Web 站点 其他 DNS 服务 域名解析 域名解析,是域名到 IP 地 ...
- 26Mybatis_一级缓存及其测试
这篇文章讲解一级缓存: 先介绍一级缓存的原理:
- VS代码片段(snippet)创作工具——Snippet Editor(转)
原文:http://blog.csdn.net/oyi319/article/details/5605502 从Visual Studio 2005开始,IDE支持代码片段.代码片段以代码缩写和TAB ...
- usb驱动开发3之先看core
上节中看到usb目录中有一个core目录,凡是认识这个core单词的人都会想要先看看它是什么,对不?用LDD3中一幅图,来表述usb core所处地位. usb core负责实现一些核心的功能,为别的 ...
- Maximum Subarray
Find the contiguous subarray within an array (containing at least one number) which has the largest ...
- php基础26:文件与目录1
<meta charset="utf-8"> <?php //绝对路径 $path = "E:\AppServ\www\php\/33-catalog. ...
- .Net中的异步编程总结
一直以来很想梳理下我在开发过程中使用异步编程的心得和体会,但是由于我是APM异步编程模式的死忠,当TAP模式和TPL模式出现的时候我并未真正的去接纳这两种模式,所以导致我一直没有花太多心思去整理这两部 ...
- 20135316王剑桥 linux第十周课实验笔记
关于who 功能说明:显示目前登入系统的用户信息. 语 法:who [-Himqsw][--help][--version][am i][记录文件] 补充说明:执行这项指令可得知目前有那些用户登入系统 ...
- IOS开发之—— model最原始的封装,MJExtension加入工程(后续model都继承于它)
DMBasicDataModel.h #import <Foundation/Foundation.h> @interface DMBasicDataModel : NSObject - ...