RDD创建

在Spark中创建RDD的创建方式大概可以分为三种:从集合中创建RDD;从外部存储创建RDD;从其他RDD创建。

  1. 由一个已经存在的Scala集合创建,集合并行化,而从集合中创建RDD,Spark主要提供了两种函数:parallelize和makeRDD。
val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))

两个函数的声明

def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] def makeRDD[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T]

我们可以从上面看出makeRDD有两种实现,而且第一个makeRDD函数接收的参数和parallelize完全一致。其实第一种makeRDD函数实现是依赖了parallelize函数的实现,来看看Spark中是怎么实现这个makeRDD函数的:

def makeRDD[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
parallelize(seq, numSlices)
}

我们可以看出,这个makeRDD函数完全和parallelize函数一致。但是我们得看看第二种makeRDD函数函数实现了,它接收的参数类型是Seq[(T, Seq[String])],Spark文档的说明是:

  Distribute a local Scala collection to form an RDD,
with one or more location preferences (hostnames of Spark nodes)
for each object. Create a new partition for each collection item.

原来,这个函数还为数据提供了位置信息,来看看我们怎么使用:

scala> val guigu1= sc.parallelize(List(1,2,3))
guigu1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:21 scala> val guigu2 = sc.makeRDD(List(1,2,3))
guigu2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[11] at makeRDD at <console>:21 scala> val seq = List((1, List("slave01")),| (2, List("slave02")))
seq: List[(Int, List[String])] = List((1,List(slave01)),
(2,List(slave02))) scala> val guigu3 = sc.makeRDD(seq)
guigu3: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at makeRDD at <console>:23 scala> guigu3.preferredLocations(guigu3.partitions(1))
res26: Seq[String] = List(slave02) scala> guigu3.preferredLocations(guigu3.partitions(0))
res27: Seq[String] = List(slave01) scala> guigu1.preferredLocations(guigu1.partitions(0))
res28: Seq[String] = List()

我们可以看到,makeRDD函数有两种实现,第一种实现其实完全和parallelize一致;而第二种实现可以为数据提供位置信息,而除此之外的实现和parallelize函数也是一致的,如下:


def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
} def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T] = withScope {
assertNotStopped()
val indexToPrefs = seq.zipWithIndex.map(t => (t._2, t._1._2)).toMap
new ParallelCollectionRDD[T](this, seq.map(_._1), seq.size, indexToPrefs)
}

都是返回ParallelCollectionRDD,而且这个makeRDD的实现不可以自己指定分区的数量,而是固定为seq参数的size大小。

由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等

scala> val atguigu = sc.textFile("hdfs://hadoop102:9000/RELEASE")
atguigu: org.apache.spark.rdd.RDD[String]
= hdfs:// hadoop102:9000/RELEASE MapPartitionsRDD[4] at textFile at <console>:24

本博客仅为博主学习总结,感谢各大网络平台的资料。蟹蟹!!

创建RDD的更多相关文章

  1. 创建RDD的方式

    创建RDD的方法: JavaRDD<String> lines = sc.textFile("hdfs://spark1:9000/spark.txt");   Jav ...

  2. Spark核心编程---创建RDD

    创建RDD: 1:使用程序中的集合创建RDD,主要用于进行测试,可以在实际部署到集群运行之前,自己使用集合构造测试数据,来测试后面的spark应用流程. 2:使用本地文件创建RDD,主要用于临时性地处 ...

  3. Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

    1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...

  4. 02、创建RDD(集合、本地文件、HDFS文件)

    Spark Core提供了三种创建RDD的方式,包括:使用程序中的集合创建RDD:使用本地文件创建RDD:使用HDFS文件创建RDD. 1.并行化集合 如果要通过并行化集合来创建RDD,需要针对程序中 ...

  5. Spark RDD概念学习系列之如何创建RDD

    不多说,直接上干货! 创建RDD 方式一:从集合创建RDD (1)makeRDD (2)Parallelize 注意:makeRDD可以指定每个分区perferredLocations参数,而para ...

  6. 5、创建RDD(集合、本地文件、HDFS文件)

    一.创建RDD 1.创建RDD 进行Spark核心编程时,首先要做的第一件事,就是创建一个初始的RDD.该RDD中,通常就代表和包含了Spark应用程序的输入源数据.然后在创建了初始的RDD之后,才可 ...

  7. 26.Spark创建RDD集合

    打开eclipse创建maven项目 pom.xml文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:x ...

  8. sparkRDD:第1节 RDD概述;第2节 创建RDD

    RDD的特点: (1)rdd是数据集: (2)rdd是编程模型:因为rdd有很多数据计算方法如map,flatMap,reduceByKey等: (3)rdd相互之间有依赖关系: (4)rdd是可以分 ...

  9. Spark练习之创建RDD(集合、本地文件),RDD持久化及RDD持久化策略

    Spark练习之创建RDD(集合.本地文件) 一.创建RDD 二.并行化集合创建RDD 2.1 Java并行创建RDD--计算1-10的累加和 2.2 Scala并行创建RDD--计算1-10的累加和 ...

随机推荐

  1. 漏洞告诉你:商家为什么都乐于提供免(diao)费(yu)WiFi?

    作为一名小微商户,每天我除了要为经营小店忙得焦头烂额,还要想方设法地寻求提升用户体验.于是,我用了号称“营销神器”的某商用WiFi系统...... 然后不可思议的事情发生了:连上此WiFi的手机(包括 ...

  2. Indy9的TIdFTPServer封装类

    在Delphi 7开发下有强大的Indy控件,版本为9,要实现一个FTP服务器,参考自带的例子,发现还要写很多函数,而且不支持中文显示文件列表等等.于是,自己改进封装了下,形成一个TFTPServer ...

  3. KmdKit4D 0.01正式版发布了(0.02版已放出)(Delphi做驱动)

    此版本较0.01预览版已经有了脱胎换骨的变化,主要表现在以下几个方面:    1.对程序的结构进行了调整,将原来的ntutils.dcu分成fcall.dcu.halfcall.dcu和macros. ...

  4. delphi中的copy函数和pos函数

    1.copy(‘csdn’,1,2) 返回的结果是 cs 注释: Copy有3个参数,第一个是要处理的字符串,第二个是要截取的开始位置,第三个是截取位数 当第三个参数大于字符长度,那么效果就是取开始位 ...

  5. linux下mysql定时备份

    1. 在服务器上建立备份文件的存放文件夹 sudo mkdir /usr/local/dbbackup 2. 编写备份脚本 vi dbbackup.sh 在里面编写如下内容 mysqldump -ur ...

  6. Redis EXISTS命令耗时过长case排查

    一.背景 redis慢日志分析平台上线后,随便看了一下,发现onestore使用的缓存集群,存在大量的EXISTS命令慢查询的情况: 平均每个EXISTS命令需要13ms,最大耗时近20ms.这个结果 ...

  7. JavaWEB路径总结

    这篇文章是小编一直想写的一篇,主要是对web阶段中各个路径进行的一些总结,希望读者看过之后对于路径方面有一个清晰的认识.首先声明一点:世界上一切东西都是相对的,对于这点而言,相信大家并不陌生,从初中开 ...

  8. 《阿里巴巴Java开发手册》改名《Java开发手册》,涵盖史无前例的三大升级

    2019.06.19 <阿里巴巴Java开发手册>时隔一年,发布更新1.5.0华山版.同时,将更名为<Java开发手册>,涵盖史无前例的三大升级 1)鉴于本手册是社区开发者集体 ...

  9. C# 设计模式,简单工厂

    C# 实现计算机功能 (封装,继承,多态) using System; using System.Collections.Generic; using System.Linq; using Syste ...

  10. Shell学习笔记1》转载自runnoob

    无论是shell 还是bat,都是与操作系统结合非常紧密的东西,所以在此占坑,希望有朝一日能够把这些东西融会贯通,于是在此占坑~ 学习地址:http://www.runoob.com/linux/li ...