RDD创建

在Spark中创建RDD的创建方式大概可以分为三种:从集合中创建RDD;从外部存储创建RDD;从其他RDD创建。

  1. 由一个已经存在的Scala集合创建,集合并行化,而从集合中创建RDD,Spark主要提供了两种函数:parallelize和makeRDD。
val rdd1 = sc.parallelize(Array(1,2,3,4,5,6,7,8))

两个函数的声明

def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] def makeRDD[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T]

我们可以从上面看出makeRDD有两种实现,而且第一个makeRDD函数接收的参数和parallelize完全一致。其实第一种makeRDD函数实现是依赖了parallelize函数的实现,来看看Spark中是怎么实现这个makeRDD函数的:

def makeRDD[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
parallelize(seq, numSlices)
}

我们可以看出,这个makeRDD函数完全和parallelize函数一致。但是我们得看看第二种makeRDD函数函数实现了,它接收的参数类型是Seq[(T, Seq[String])],Spark文档的说明是:

  Distribute a local Scala collection to form an RDD,
with one or more location preferences (hostnames of Spark nodes)
for each object. Create a new partition for each collection item.

原来,这个函数还为数据提供了位置信息,来看看我们怎么使用:

scala> val guigu1= sc.parallelize(List(1,2,3))
guigu1: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[10] at parallelize at <console>:21 scala> val guigu2 = sc.makeRDD(List(1,2,3))
guigu2: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[11] at makeRDD at <console>:21 scala> val seq = List((1, List("slave01")),| (2, List("slave02")))
seq: List[(Int, List[String])] = List((1,List(slave01)),
(2,List(slave02))) scala> val guigu3 = sc.makeRDD(seq)
guigu3: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[12] at makeRDD at <console>:23 scala> guigu3.preferredLocations(guigu3.partitions(1))
res26: Seq[String] = List(slave02) scala> guigu3.preferredLocations(guigu3.partitions(0))
res27: Seq[String] = List(slave01) scala> guigu1.preferredLocations(guigu1.partitions(0))
res28: Seq[String] = List()

我们可以看到,makeRDD函数有两种实现,第一种实现其实完全和parallelize一致;而第二种实现可以为数据提供位置信息,而除此之外的实现和parallelize函数也是一致的,如下:


def parallelize[T: ClassTag](
seq: Seq[T],
numSlices: Int = defaultParallelism): RDD[T] = withScope {
assertNotStopped()
new ParallelCollectionRDD[T](this, seq, numSlices, Map[Int, Seq[String]]())
} def makeRDD[T: ClassTag](seq: Seq[(T, Seq[String])]): RDD[T] = withScope {
assertNotStopped()
val indexToPrefs = seq.zipWithIndex.map(t => (t._2, t._1._2)).toMap
new ParallelCollectionRDD[T](this, seq.map(_._1), seq.size, indexToPrefs)
}

都是返回ParallelCollectionRDD,而且这个makeRDD的实现不可以自己指定分区的数量,而是固定为seq参数的size大小。

由外部存储系统的数据集创建,包括本地的文件系统,还有所有Hadoop支持的数据集,比如HDFS、Cassandra、HBase等

scala> val atguigu = sc.textFile("hdfs://hadoop102:9000/RELEASE")
atguigu: org.apache.spark.rdd.RDD[String]
= hdfs:// hadoop102:9000/RELEASE MapPartitionsRDD[4] at textFile at <console>:24

本博客仅为博主学习总结,感谢各大网络平台的资料。蟹蟹!!

创建RDD的更多相关文章

  1. 创建RDD的方式

    创建RDD的方法: JavaRDD<String> lines = sc.textFile("hdfs://spark1:9000/spark.txt");   Jav ...

  2. Spark核心编程---创建RDD

    创建RDD: 1:使用程序中的集合创建RDD,主要用于进行测试,可以在实际部署到集群运行之前,自己使用集合构造测试数据,来测试后面的spark应用流程. 2:使用本地文件创建RDD,主要用于临时性地处 ...

  3. Spark核心RDD、什么是RDD、RDD的属性、创建RDD、RDD的依赖以及缓存、

    1:什么是Spark的RDD??? RDD(Resilient Distributed Dataset)叫做弹性分布式数据集,是Spark中最基本的数据抽象,它代表一个不可变.可分区.里面的元素可并行 ...

  4. 02、创建RDD(集合、本地文件、HDFS文件)

    Spark Core提供了三种创建RDD的方式,包括:使用程序中的集合创建RDD:使用本地文件创建RDD:使用HDFS文件创建RDD. 1.并行化集合 如果要通过并行化集合来创建RDD,需要针对程序中 ...

  5. Spark RDD概念学习系列之如何创建RDD

    不多说,直接上干货! 创建RDD 方式一:从集合创建RDD (1)makeRDD (2)Parallelize 注意:makeRDD可以指定每个分区perferredLocations参数,而para ...

  6. 5、创建RDD(集合、本地文件、HDFS文件)

    一.创建RDD 1.创建RDD 进行Spark核心编程时,首先要做的第一件事,就是创建一个初始的RDD.该RDD中,通常就代表和包含了Spark应用程序的输入源数据.然后在创建了初始的RDD之后,才可 ...

  7. 26.Spark创建RDD集合

    打开eclipse创建maven项目 pom.xml文件 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:x ...

  8. sparkRDD:第1节 RDD概述;第2节 创建RDD

    RDD的特点: (1)rdd是数据集: (2)rdd是编程模型:因为rdd有很多数据计算方法如map,flatMap,reduceByKey等: (3)rdd相互之间有依赖关系: (4)rdd是可以分 ...

  9. Spark练习之创建RDD(集合、本地文件),RDD持久化及RDD持久化策略

    Spark练习之创建RDD(集合.本地文件) 一.创建RDD 二.并行化集合创建RDD 2.1 Java并行创建RDD--计算1-10的累加和 2.2 Scala并行创建RDD--计算1-10的累加和 ...

随机推荐

  1. Bigtable:结构化数据的分布式存储系统

    Bigtable最初是谷歌设计用来存储大规模结构化数据的分布式系统,其可以在数以千计的商用服务器上存储高达PB级别的数据量.开源社区根据Bigtable的设计思路开发了HBase.其优势在于提供了高效 ...

  2. Hadoop中一些重要概念简要总结

    Hadoop是一个利用大规模计算机集群,可处理大量数据的分布式并行框架. Hadoop 官网 Hadoop的核心设计包括HDFS和MapReduce. HDFS HDFS(Hadoop Distrib ...

  3. Delphi For Linux Compiler

    Embarcadero is about to release a new Delphi compiler for the Linux platform. Here are some of the k ...

  4. 一、OpenScenGraph环境搭建

    1.OpenSceneGraph 3.4.0  网址  http://www.openscenegraph.org/ github源码地址 https://github.com/openscenegr ...

  5. Laravel:php artisan key:generate三种报错解决方案,修改默认PHP版本(宝塔面板)

    为了兼容N多个网站,服务器上有3个PHP版本5.3/5.6/7.2.宝塔默认为5.3,但是laravel5.7并不支持,所以在创建线上 .env 环境配置文件,初始化应用配置时候报错了. cp .en ...

  6. HTML连载16-颜色控制属性2&标签选择器

    一.颜色控制属性(上接连载15) (4)十六进制 在前端开发中通过十六进制来表示颜色,其实本质就是RGB,十六进制中是通过每两位表示一个颜色. 例如:#FFEE00,其中FF代表的是R,EE代表的G, ...

  7. Mount挂载/data时出现mount: /data is busy 如何解决?

    1.df -h查看下挂载点/data是否正在使用,有时候会存在挂载了,但df -h不会显示出来,这时候 grep “/data” /proc/mounts 来进行查看 2.当确认挂载点/data正在使 ...

  8. 关于学习js的Promise的心得体会

    最近一直在研究js的Promise对象,其中有一篇blog写得比较通俗易懂,转发如下: http://www.cnblogs.com/lvdabao/p/es6-promise-1.html 参照上面 ...

  9. Zookeeper详解-伪分布式和集群搭建(八)

    说到分布式开发Zookeeper是必须了解和掌握的,分布式消息服务kafka .hbase 到hadoop等分布式大数据处理都会用到Zookeeper,所以在此将Zookeeper作为基础来讲解. Z ...

  10. 【设计模式】行为型10中介者模式(Mediator Pattern)

    中介者模式(Mediator Pattern)     这里笔者完全参考了:http://www.runoob.com/design-pattern/mediator-pattern.html,案例精 ...