均方误差(Mean Square Error,MSE)和平均绝对误差(Mean Absolute Error,MAE) 是回归中最常用的两个损失函数,但是其各有优缺点。为了避免MAE和MSE各自的优缺点,在Faster R-CNN和SSD中使用\(\text{Smooth} L_1\)损失函数,当误差在\([-1,1]\) 之间时,\(\text{Smooth} L_1\)损失函数近似于MSE,能够快速的收敛;在其他的区间则近似于MAE,其导数为\(\pm1\),不会对离群值敏感。

本文再介绍几种回归常用的损失函数

  • Huber Loss
  • Log-Cosh Loss
  • Quantile Loss

Huber Loss

Huber损失函数(\(\text{Smooth} L_1\)损失函数是其的一个特例)整合了MAE和MSE各自的优点,并避免其缺点
\[
L_\delta(y,f(x)) = \left \{ \begin{array}{c} \frac{1}{2} (y - f(x))^2 & \mid y - f(x) \mid \leq \delta \\ \delta \mid y-f(x) \mid - \frac{1}{2} \delta ^2 & \text{otherwise}\end{array}\right.
\]

\(\delta\) 是Huber的一个超参数,当真实值和预测值的差值\(\mid y- f(x) \mid \leq \delta\) 时,Huber就是MSE;当差值在\((-\infty,\delta )\)或者 \((\delta,+\infty)\) 时,Huber就是MAE。这样,当误差较大时,使用MAE对离群点不那么敏感;在误差较小时使用MSE,能够快速的收敛;

这里超参数\(\delta\)的值的设定就较为重要,和真实值的差值超过该值的样本为异常值。误差的绝对值小于\(\delta\) 时,使用MSE;当误差大于\(\delta\) 时,使用MAE。

下图给出了不同的\(\delta\) 值,Huber的函数曲线。

横轴表示真实值和预测值的差值,纵轴为Huber的函数值。可以看出,\(\delta\) 越小其曲线越趋近于MSE;越大,越趋近于MAE。

另外,使用MAE训练神经网络最大的一个问题就是不变的大梯度,这可能导致在使用梯度下降快要结束时,错过了最小点。而对于MSE,梯度会随着损失的减小而减小,使结果更加精确。

在这种情况下,Huber损失就非常有用。它会由于梯度的减小而落在最小值附近。比起MSE,它对异常点更加鲁棒。因此,Huber损失结合了MSE和MAE的优点。但是,Huber损失的问题是我们可能需要不断调整超参数\(\delta\) 。

\(\text{Smooth }L_1\) 损失函数可以看作超参数\(\delta = 1\) 的Huber函数。

Log-Cosh Loss

Log-Cosh是比\(L_2\) 更光滑的损失函数,是误差值的双曲余弦的对数
\[
L(y,f(x)) = \sum_{i=1}^n\log \cosh(y-f(x))
\]
其中,\(y\)为真实值,\(f(x)\) 为预测值。

对于较小的误差$\mid y - f(x) \mid $ ,其近似于MSE,收敛下降较快;对于较大的误差\(\mid y - f(x) \mid\) 其近似等于\(\mid y-f(x) \mid - log(2)\) ,类似于MAE,不会受到离群点的影响。 Log-Cosh具有Huber 损失的所有有点,且不需要设定超参数。

相比于Huber,Log-Cosh求导比较复杂,计算量较大,在深度学习中使用不多。不过,Log-Cosh处处二阶可微,这在一些机器学习模型中,还是很有用的。例如XGBoost,就是采用牛顿法来寻找最优点。而牛顿法就需要求解二阶导数(Hessian)。因此对于诸如XGBoost这类机器学习框架,损失函数的二阶可微是很有必要的。但Log-cosh损失也并非完美,其仍存在某些问题。比如误差很大的话,一阶梯度和Hessian会变成定值,这就导致XGBoost出现缺少分裂点的情况。

Quantile Loss 分位数损失

通常的回归算法是拟合训练数据的期望或者中位数,而使用分位数损失函数可以通过给定不同的分位点,拟合训练数据的不同分位数。 如下图

设置不同的分位数可以拟合出不同的直线。

分位数损失函数如下:
\[
L_{quantile} = \frac{1}{N}\sum_{i=1}^N \amalg_{y > f(x)}(1-\gamma)\mid y-f(x)\mid + \amalg_{y < f(x)}\gamma \mid y - f(x) \mid
\]
该函数是一个分段函数,\(\gamma\) 为分位数系数,\(y\)为真实值,\(f(x)\)为预测值。根据预测值和真实值的大小,分两种情况来开考虑。\(y > f(x)\) 为高估,预测值比真实值大;\(y < f(x)\)为低估,预测值比真实值小,使用不同过得系数来控制高估和低估在整个损失值的权重

特别的,当\(\gamma = 0.5\) 时,分位数损失退化为平均绝对误差MAE,也可以将MAE看成是分位数损失的一个特例 - 中位数损失。下图是取不同的中位点\([0.25,0.5,0.7]\) 得到不同的分位数损失函数的曲线,也可以看出0.5时就是MAE。

总结

均方误差(Mean Square Error,MSE)和平均绝对误差(Mean Absolute Error,MAE) 可以说是回归损失函数的基础。但是MSE对对离群点(异常值)较敏感,MAE在梯度下降的过程中收敛较慢,就出现各种样的分段损失函数,在loss值较小的区间使用MSE,loss值较大的区间使用MAE。

  • Huber Loss ,需要一个超参数\(\delta\) ,来定义离群值。$ \text{smooth } L_1$ 是\(\delta = 1\) 的一种情况。
  • Log-Cosh Loss, Log-Cosh是比\(L_2\) 更光滑的损失函数,是误差值的双曲余弦的对数.
  • Quantile Loss , 分位数损失,则可以设置不同的分位点,控制高估和低估在loss中占的比重。

回归损失函数2 : HUber loss,Log Cosh Loss,以及 Quantile Loss的更多相关文章

  1. 回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss

    回归损失函数:L1,L2,Huber,Log-Cosh,Quantile Loss 2019-06-04 20:09:34 clover_my 阅读数 430更多 分类专栏: 阅读笔记   版权声明: ...

  2. 目标检测——Faster R_CNN使用smooth L1作为bbox的回归损失函数原因

    前情提要—— 网上关于目标检测框架——faster r_cnn有太多太好的博文,这是我在组会讲述faster r_cnn这一框架时被人问到的一个点,当时没答上来,于是会下好好百度和搜索一下研究了一下这 ...

  3. 感知机、logistic回归 损失函数对比探讨

    感知机.logistic回归 损失函数对比探讨 感知机 假如数据集是线性可分的,感知机学习的目标是求得一个能够将正负样本完全分开的分隔超平面 \(wx+b=0\) .其学习策略为,定义(经验)损失函数 ...

  4. logistic回归损失函数(非常重要,深入理解)

    2.2 logistic回归损失函数(非常重要,深入理解) 上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学 ...

  5. L1、L2损失函数、Huber损失函数

    L1范数损失函数,也被称为最小绝对值偏差(LAD),最小绝对值误差(LAE) L2范数损失函数,也被称为最小平方误差(LSE) L2损失函数 L1损失函数 不是非常的鲁棒(robust) 鲁棒 稳定解 ...

  6. 逻辑回归损失函数(cost function)

    逻辑回归模型预估的是样本属于某个分类的概率,其损失函数(Cost Function)可以像线型回归那样,以均方差来表示:也可以用对数.概率等方法.损失函数本质上是衡量”模型预估值“到“实际值”的距离, ...

  7. keras 分类回归 损失函数与评价指标

    1.目标函数 (1)mean_squared_error / mse 均方误差,常用的目标函数,公式为((y_pred-y_true)**2).mean()(2)mean_absolute_error ...

  8. 2.2 logistic回归损失函数(非常重要,深入理解)

    上一节当中,为了能够训练logistic回归模型的参数w和b,需要定义一个成本函数 使用logistic回归训练的成本函数 为了让模型通过学习来调整参数,要给出一个含有m和训练样本的训练集 很自然的, ...

  9. Huber Loss

    Huber Loss 是一个用于回归问题的带参损失函数, 优点是能增强平方误差损失函数(MSE, mean square error)对离群点的鲁棒性. 当预测偏差小于 δ 时,它采用平方误差, 当预 ...

随机推荐

  1. 【Java】面向对象之封装

    面向对象编程是对客观世界的模拟,客观世界里成员变量都是隐藏在对象内部的,外界无法直接操作和修改.封装可以被认为是一个保护屏障,防止该类的代码和数据被其他类随意访问.要访问该类的数据,必须通过指定的方式 ...

  2. iOS核心动画高级技巧 - 3

    7. 隐式动画 隐式动画 按照我的意思去做,而不是我说的. -- 埃德娜,辛普森 我们在第一部分讨论了Core Animation除了动画之外可以做到的任何事情.但是动画是Core Animation ...

  3. Java虚拟机详解(十)------类加载过程

    在上一篇文章中,我们详细的介绍了Java类文件结构,那么这些Class文件是如何被加载到内存,由虚拟机来直接使用的呢?这就是本篇博客将要介绍的——类加载过程. 1.类的生命周期 类从被加载到虚拟机内存 ...

  4. SpringBoot 源码解析 (十)----- Spring Boot的核心能力 - 集成AOP

    本篇主要集成Sping一个重要功能AOP 我们还是先回顾一下以前Spring中是如何使用AOP的,大家可以看看我这篇文章spring5 源码深度解析----- AOP的使用及AOP自定义标签 Spri ...

  5. day 30 多线程 socketserver模块补充

    内容回顾: socket 模块 服务端:收发数据 - > accept/recv 客户端:收发数据 -> connect/recv 1. 考试题 1. 解释性和编译型 编译型: 先把代码编 ...

  6. JRE JDK JVM的区别

    jdk>jre>jvm jdk是面向开发者具有编译功能: jre是面向用户的,主要是class文件的运行,假如我们只有编译好的class文件和jre,那么就可以运行class了. jvm是 ...

  7. 【RN - 基础】之React Native组件的生命周期

    下图描述了React Native中组件的生命周期: 从上图中可以看到,React Native组件的生命周期可以分为初始化阶段.存在阶段和销毁阶段. 实例化阶段 实例化阶段是React Native ...

  8. centos7安装fail2ban

    fail2ban是一款非常实用的安全软件,通过监视系统日志,设置错误登陆次数,可阻挡暴力密码攻击. 1.安装epelyum install epel-release -y 2.安装fail2banyu ...

  9. 并行通信芯片8255A学习总结

    并行通信接口8255A AB口为两个数据端口,C口可以作为数据端口也可以作为状态端口 8255A是一个40引脚的双列直插式芯片 引脚如下 D0-D7:双向数据信号线. RD:读信号线. WR:写信号线 ...

  10. 使用生成对抗网络(GAN)生成手写字

    先放结果 这是通过GAN迭代训练30W次,耗时3小时生成的手写字图片效果,大部分的还是能看出来是数字的. 实现原理 简单说下原理,生成对抗网络需要训练两个任务,一个叫生成器,一个叫判别器,如字面意思, ...