题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095

题解:其实是一道简单的组合数只要推导一下错排就行了。在这里就推导一下错排

dp[i]=(i-1)*dp[i-2](表示新加的那个数放到i-1中的某一个位置然后那个被放位置的数放在i这个位置就是i-2的错排)+(i-1)*dp[i-1](表示新加的那个数放到i-1中的某一个位置然后用那个位置被占的数代替i这个位置的数就是i-1的错排)

#include <iostream>
#include <cstring>
#include <cstdio>
#include <cmath>
#define mod 1000000007
using namespace std;
typedef long long ll;
const int M = 1e3 + 10;
ll dp[M];
ll up[M] , down[M];
ll inv(ll a) {
return a == 1 ? 1 : (ll)(mod - mod / a) * inv(mod % a) % mod;
}
void fk() {
dp[0] = 1 , dp[1] = 0 , dp[2] = 1;
for(int i = 3 ; i < M ; i++) dp[i] = (i - 1) * ((dp[i - 1] + dp[i - 2]) % mod) , dp[i] %= mod;
}
ll C(ll n , ll m)
{
if(m < 0)return 0;
if(n < m)return 0;
if(m > n-m) m = n-m;
ll up = 1, down = 1;
for(ll i = 0 ; i < m ; i++){
up = up * (n-i) % mod;
down = down * (i+1) % mod;
}
return up * inv(down) % mod;
}
int main() {
fk();
int t , Case = 0;
scanf("%d" , &t);
while(t--) {
int n , m , k;
scanf("%d%d%d" , &n , &m , &k);
ll ans = 0;
ll gg = C(m , k);
up[0] = 1 , down[0] = 1;
for(int i = 1 ; i <= (n - m) / 2 ; i++) up[i] = up[i - 1] * ((n - m) - i + 1) % mod , down[i] = down[i - 1] * i % mod;
for(int i = (n - m) / 2 + 1 ; i <= (n - m) ; i++) up[i] = up[(n - m) - i] , down[i] = down[(n - m) - i];
for(int i = n - k ; i >= (m - k) ; i--) {
ans += dp[i] * (up[n - k - i] * (inv(down[n - k - i]) % mod) % mod);
ans %= mod;
}
ans *= gg;
ans %= mod;
printf("Case %d: %lld\n" , ++Case , (ans + mod) % mod);
}
return 0;
}

lightoj 1095 - Arrange the Numbers(dp+组合数)的更多相关文章

  1. LightOJ - 1095 - Arrange the Numbers(错排)

    链接: https://vjudge.net/problem/LightOJ-1095 题意: Consider this sequence {1, 2, 3 ... N}, as an initia ...

  2. light oj 1095 - Arrange the Numbers排列组合(错排列)

    1095 - Arrange the Numbers Consider this sequence {1, 2, 3 ... N}, as an initial sequence of first N ...

  3. Light oj 1095 - Arrange the Numbers (组合数学+递推)

    题目链接:http://www.lightoj.com/volume_showproblem.php?problem=1095 题意: 给你包含1~n的排列,初始位置1,2,3...,n,问你刚好固定 ...

  4. LightOJ - 1246 Colorful Board(DP+组合数)

    http://lightoj.com/volume_showproblem.php?problem=1246 题意 有个(M+1)*(N+1)的棋盘,用k种颜色给它涂色,要求曼哈顿距离为奇数的格子之间 ...

  5. Codeforces 747F Igor and Interesting Numbers DP 组合数

    题意:给你一个数n和t,问字母出现次数不超过t,第n小的16进制数是多少. 思路:容易联想到数位DP, 然而并不是...我们需要知道有多少位,在知道有多少位之后,用试填法找出答案.我们设dp[i][j ...

  6. Light OJ 1095 Arrange the Numbers(容斥)

    给定n,m,k,要求在n的全排列中,前m个数字中恰好有k个位置不变,有几种方案?首先,前m个中k个不变,那就是C(m,k),然后利用容斥原理可得 ans=ΣC(m,k)*(-1)^i*C(m-k,i) ...

  7. LightOJ 1095 Arrange the Numbers-容斥

    给出n,m,k,求1~n中前m个正好有k个在原来位置的种数(i在第i个位置) 做法:容斥,先选出k个放到原来位置,然后剩下m-k个不能放到原来位置的,用0个放到原来位置的,有C(m-k,0)*(n-k ...

  8. LightOJ 1033 Generating Palindromes(dp)

    LightOJ 1033  Generating Palindromes(dp) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid= ...

  9. lightOJ 1047 Neighbor House (DP)

    lightOJ 1047   Neighbor House (DP) 题目链接:http://acm.hust.edu.cn/vjudge/contest/view.action?cid=87730# ...

随机推荐

  1. 常用GDB命令行调试命令

    po po是print-object的简写,可用来打印所有NSObject对象.使用举例如下: (gdb) po self <LauncherViewController: 0x552c570& ...

  2. spark shuffle写操作三部曲之BypassMergeSortShuffleWriter

    前言 再上一篇文章 spark shuffle的写操作之准备工作 中,主要介绍了 spark shuffle的准备工作,本篇文章主要介绍spark shuffle使用BypassMergeSortSh ...

  3. 已知词频生成词云图(数据库到生成词云)--generate_from_frequencies(WordCloud)

    词云图是根据词出现的频率生成词云,词的字体大小表现了其频率大小. 写在前面: 用wc.generate(text)直接生成词频的方法使用很多,所以不再赘述. 但是对于根据generate_from_f ...

  4. idea 新建不了servlet文件 方法(1)

    在pem.xml中添加较新版本的servletapi包 <dependency> <groupId>javax.servlet</groupId> <arti ...

  5. 11个rsync使用实例

    rsync表示 remote sync,其用于在本地或与远程主机间进行文件或目录备份.相比较scp等工具,rsync有以下优点: 速度:除首次全拷贝外,其他时候实现增量拷贝,加快传输速度 安全:传输数 ...

  6. springmvc原理详解(手写springmvc)

    最近在复习框架 在快看小说网搜了写资料 和原理 今天总结一下 希望能加深点映像  不足之处请大家指出 我就不画流程图了 直接通过代码来了解springmvc的运行机制和原理 回想用springmvc用 ...

  7. 解读 PHP 的 P++提案

    解读 PHP 的 P++提案 周末看到一篇文章说 PHP 创始人提议将 PHP 拉出新分支,创建 P++ 语言.随后阅读了一下 Zeev Suraski 发起的这个邮件列表,大致了解了一下,这里做个解 ...

  8. 用python实现银行家算法

    编制模拟银行家算法的程序,并以下面给出的例子验证所编写的程序的正确性. 进程 已占资源 最大需求数 资源种类 A B C D A B C D P0 0 0 1 2 0 0 1 2 P1 1 0 0 0 ...

  9. intellij idea与github整合管理代码

    各位看官大家好,博主每每在公司学习新知识写代码时都需要通过U盘带回家来继续每天的学习,觉得这样实在麻烦,于是今天就整合了一下github来完成代码的管理. 开始之前我们需要准备三样东西:1.intel ...

  10. vscode导入已存在的vue.js工程

    1.安装vue_cli 如果安装了npm,直接在命令行输入npm install -g vue-cli,安装在全局组件目录下 完成后,可以在命令测试下 2.导入工程 打开vscode-------&g ...