AtCoder Beginner Contest 143 F - Distinct Numbers
题意
给出一个长度为NNN的序列,求对于所有k∈[1,N]k\in[1,N]k∈[1,N],每次从序列中选出kkk个互不相同的数,最多能取多少次。
N≤3e5N\le3e5N≤3e5
题解
我们首先把数组转化为相同的数的出现次数的序列,如序列(1,3,4,4)(1,3,4,4)(1,3,4,4)就转化为(1,1,2)(1,1,2)(1,1,2)。把这个得到的序列计作aaa。
然后二分答案,假设当前二分到xxx,能取xxx次的条件是:
(∑ai≤xai)+x⋅∑ai>x1≥k⋅x\large(\sum_{a_i\le x}a_i)+x\cdot\sum_{a_i>x}1\ge k\cdot x(ai≤x∑ai)+x⋅ai>x∑1≥k⋅x因为同一个数最多取到xxx次,而取到的总数为k⋅xk\cdot xk⋅x。
发现当kkk增大时答案减小,所以可以把二分去掉,写一个指针动就行了。这样的时间复杂度是O(nlogn)O(n\log n)O(nlogn)的,因为要upper_boundupper\_boundupper_bound。
CODE
#include <bits/stdc++.h>
using namespace std;
inline void rd(int &x) {
char ch; for(;!isdigit(ch=getchar()););
for(x=ch-'0';isdigit(ch=getchar());)x=x*10+ch-'0';
}
typedef long long LL;
const int MAXN = 300005;
int N, n, a[MAXN], cnt[MAXN];
LL sum[MAXN];
int ans[MAXN];
inline bool chk(int k, int x) {
int pos = upper_bound(a + 1, a + n + 1, x) - a;
return sum[pos-1] + 1ll*(n-pos+1)*x >= 1ll*k*x;
}
int main() {
rd(N);
for(int i = 1, x; i <= N; ++i) rd(x), ++cnt[x];
for(int i = 1; i <= 300000; ++i) if(cnt[i]) a[++n] = cnt[i];
sort(a + 1, a + n + 1);
for(int i = 1; i <= n; ++i) sum[i] = sum[i-1] + a[i];
int now = 0;
for(int k = n; k >= 1; --k) {
while(now < N && chk(k, now+1)) ++now;
ans[k] = now;
}
for(int i = 1; i <= N; ++i) printf("%d\n", ans[i]);
}
然而看了别人的博客后发现,可以O(n)O(n)O(n)。
上代码:
sum[x]sum[x]sum[x]存的就是上面的不等式的左边部分。
#include <bits/stdc++.h>
using namespace std;
inline void rd(int &x) {
char ch; for(;!isdigit(ch=getchar()););
for(x=ch-'0';isdigit(ch=getchar());)x=x*10+ch-'0';
}
typedef long long LL;
const int MAXN = 300005;
int n, cnt[MAXN];
LL sum[MAXN];
int ans[MAXN];
inline bool chk(int k, int x) { return sum[x] >= 1ll*k*x; }
int main() {
rd(n);
for(int i = 1, x; i <= n; ++i) rd(x), ++cnt[x], ++sum[cnt[x]];
for(int i = 1; i <= n; ++i) sum[i] += sum[i-1];
int now = 0;
for(int k = n; k >= 1; --k) {
while(now < n && chk(k, now+1)) ++now;
ans[k] = now;
}
for(int i = 1; i <= n; ++i) printf("%d\n", ans[i]);
}
正确性读者自证不难
AtCoder Beginner Contest 143 F - Distinct Numbers的更多相关文章
- AtCoder Beginner Contest 137 F
AtCoder Beginner Contest 137 F 数论鬼题(虽然不算特别数论) 希望你在浏览这篇题解前已经知道了费马小定理 利用用费马小定理构造函数\(g(x)=(x-i)^{P-1}\) ...
- AtCoder Beginner Contest 261 F // 树状数组
题目链接:F - Sorting Color Balls (atcoder.jp) 题意: 有n个球,球有颜色和数字.对相邻的两球进行交换时,若颜色不同,需要花费1的代价.求将球排成数字不降的顺序,所 ...
- AtCoder Beginner Contest 260 F - Find 4-cycle
题目传送门:F - Find 4-cycle (atcoder.jp) 题意: 给定一个无向图,其包含了S.T两个独立点集(即S.T内部间的任意两点之间不存在边),再给出图中的M条边(S中的点与T中的 ...
- AtCoder Beginner Contest 253 F - Operations on a Matrix // 树状数组
题目传送门:F - Operations on a Matrix (atcoder.jp) 题意: 给一个N*M大小的零矩阵,以及Q次操作.操作1(l,r,x):对于 [l,r] 区间内的每列都加上x ...
- AtCoder Beginner Contest 249 F - Ignore Operations // 贪心 + 大根堆
传送门:F - Keep Connect (atcoder.jp) 题意: 给定长度为N的操作(ti,yi). 给定初值为0的x,对其进行操作:当t为1时,将x替换为y:当t为2时,将x加上y. 最多 ...
- AtCoder Beginner Contest 247 F - Cards // dp + 并查集
原题链接:F - Cards (atcoder.jp) 题意: 给定N张牌,每张牌正反面各有一个数,所有牌的正面.反面分别构成大小为N的排列P,Q. 求有多少种摆放方式,使得N张牌朝上的数字构成一个1 ...
- AtCoder Beginner Contest 133 F Colorful Tree
Colorful Tree 思路: 如果强制在线的化可以用树链剖分. 但这道题不强制在线,那么就可以将询问进行差分,最后dfs时再计算每个答案的修改值, 只要维护两个数组就可以了,分别表示根节点到当前 ...
- AtCoder Beginner Contest 171-175 F
171 F - Strivore 直接把初始字符当成隔板,统计的方案数会有重复 为了避免重复情况,规定隔板字母尽可能最后出现,即在隔板字母后面不能插入含隔板字母的字符串 所以在隔板字母后插入的字符只有 ...
- AtCoder Beginner Contest 182 F
F - Valid payments 简化题意:有\(n\)种面值的货币,保证\(a[1]=1,且a[i+1]是a[i]的倍数\). 有一个价格为\(x\)元的商品,付款\(y\)元,找零\(y-x\ ...
随机推荐
- ding
Import "shanhai.lua"Dim currHour,currMinute,currSecondDim mmRnd = 0Dim sumFor=Int(ReadUICo ...
- python 之 re模块、hashlib模块
6.16 re模块 正则就是用一些具有特殊含义的符号组合到一起(称为正则表达式)来描述字符或者字符串的方法.或者说:正则就是用来描述一类事物的规则.(在Python中)它内嵌在Python中,并通过 ...
- golang 管理 pidfile
Pidfile 存储了进程的进程 id.一般情况下 pidfile 有以下几个作用: 其他进程可以读取 pidfile 获取运行进程的 pid(当然也可以通过其他命令 动态获取) 在启动进程前先检查 ...
- shellexecute的使用和X64判断
bool RunConsoleAsAdmin(std::string appPath, std::string param, bool wait) { LOG_INFO << " ...
- RabbitMQ集群部署、高可用和持久化
RabbitMQ 安装和使用 1.安装依赖环境 在 http://www.rabbitmq.com/which-erlang.html 页面查看安装rabbitmq需要安装erlang对应的版本 在 ...
- 持久化存储之 PV、PVC、StorageClass
PV介绍: PersistentVolume(PV)是群集中由管理员配置的一块存储. 它是集群中的资源,就像节点是集群资源一样. PV是容量插件,如Volumes,但其生命周期独立于使用PV的任何单个 ...
- HTTP无状态协议理解
TTP协议是无状态协议. 无状态是指协议对于事务处理没有记忆能力.缺少状态意味着如果后续处理需要前面的信息,则它必须重传,这样可能导致每次连接传送的数据量增大.另一方面,在服务器不需要先前信息时它的应 ...
- VS.NET(C#)--2.3良构的XHTML
良构的XHTML 1.关闭所有标签 2.禁止标签嵌套 3.区分大小写 4.引号 所有属性值都要置于引号中 5.唯一的根元素<html></html> 6.保留字符 XML中五 ...
- POJ3368(Frequent values)--线段树
题目在这里 3368 Accepted 7312K 1829MS C++ 6936B 题意为给你一组数据,再给定一组区间,问你这个区间内出现次数最多的元素的次数是多少. 我还记得这题是学校校赛基础的题 ...
- 在vue项目中使用live2d
成品如图: 那么几步简单说明怎么用吧: 第一,先去github上下载相应的静态资源: https://github.com/xiazeyu/live2d-widget-models 第二,将packg ...