3295: [Cqoi2011]动态逆序对

Time Limit: 10 Sec  Memory Limit: 128 MB
Submit: 3865  Solved: 1298
[Submit][Status][Discuss]

Description

对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数。给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计整个序列的逆序对数。

Input

输入第一行包含两个整数nm,即初始元素的个数和删除的元素个数。以下n行每行包含一个1到n之间的正整数,即初始排列。以下m行每行一个正整数,依次为每次删除的元素。
 

Output

 
输出包含m行,依次为删除每个元素之前,逆序对的个数。

Sample Input

5 4
1
5
3
4
2
5
1
4
2

Sample Output

5
2
2
1

样例解释
(1,5,3,4,2)(1,3,4,2)(3,4,2)(3,2)(3)。

HINT

N<=100000 M<=50000

Source

树状数组套线段树

删除某个数,只要统计它之前还存在的比它大的数的个数,和之后还存在的比它小的数的个数

#include<cstdio>
#include<cstring>
#include<algorithm>
#define ll long long
#define R register
using namespace std;
int read(){
R int x=;bool f=;
R char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=;ch=getchar();}
while(ch>=''&&ch<=''){x=(x<<)+(x<<)+ch-'';ch=getchar();}
return f?x:-x;
}
const int N=1e5+;
const int M=N*;
int A[],B[];
int n,m,sz,num[N],pos[N],a1[N],a2[N],root[N],c[N];
int ls[M],rs[M],sum[M];
ll ans;
inline int lowbit(int x){
return x&-x;
}
void updata(int p,int v){
for(int i=p;i<=n;i+=lowbit(i)) c[i]+=v;
}
int query(int p){
int res=;
for(int i=p;i;i-=lowbit(i)) res+=c[i];
return res;
}
void update(int &y,int l,int r,int x){
if(!y) y=++sz;
sum[y]++;
if(l==r)return;
int mid=(l+r)>>;
if(x<=mid) update(ls[y],l,mid,x);
else update(rs[y],mid+,r,x);
}
int askmore(int x,int y,int num){
A[]=B[]=;int tmp=;x--;
for(int i=x;i;i-=lowbit(i)) A[++A[]]=root[i];
for(int i=y;i;i-=lowbit(i)) B[++B[]]=root[i];
int l=,r=n;
while(l!=r){
int mid=l+r>>;
if(num<=mid){
for(int i=;i<=A[];i++) tmp-=sum[rs[A[i]]];
for(int i=;i<=B[];i++) tmp+=sum[rs[B[i]]];
for(int i=;i<=A[];i++) A[i]=ls[A[i]];
for(int i=;i<=B[];i++) B[i]=ls[B[i]];
r=mid;
}
else{
for(int i=;i<=A[];i++) A[i]=rs[A[i]];
for(int i=;i<=B[];i++) B[i]=rs[B[i]];
l=mid+;
}
}
return tmp;
}
int askless(int x,int y,int num){
A[]=B[]=;int tmp=;x--;
for(int i=x;i;i-=lowbit(i)) A[++A[]]=root[i];
for(int i=y;i;i-=lowbit(i)) B[++B[]]=root[i];
int l=,r=n;
while(l!=r){
int mid=l+r>>;
if(num>mid){
for(int i=;i<=A[];i++) tmp-=sum[ls[A[i]]];
for(int i=;i<=B[];i++) tmp+=sum[ls[B[i]]];
for(int i=;i<=A[];i++) A[i]=rs[A[i]];
for(int i=;i<=B[];i++) B[i]=rs[B[i]];
l=mid+;
}
else{
for(int i=;i<=A[];i++) A[i]=ls[A[i]];
for(int i=;i<=B[];i++) B[i]=ls[B[i]];
r=mid;
}
}
return tmp;
}
int main(){
n=read();m=read();
for(int i=;i<=n;i++){
num[i]=read();pos[num[i]]=i;
a1[i]=query(n)-query(num[i]);
ans+=a1[i];
updata(num[i],);
}
memset(c,,sizeof c);
for(int i=n;i;i--){
a2[i]=query(num[i]-);
updata(num[i],);
}
for(int i=,x;i<=m;i++){
printf("%lld\n",ans);
x=read();x=pos[x];
ans-=(a1[x]+a2[x]-askmore(,x-,num[x])-askless(x+,n,num[x]));
for(int j=x;j<=n;j+=lowbit(j)) update(root[j],,n,num[x]);
}
return ;
}

BZOJ 3295: [Cqoi2011]动态逆序对的更多相关文章

  1. Bzoj 3295: [Cqoi2011]动态逆序对 分块,树状数组,逆序对

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2886  Solved: 924[Submit][Stat ...

  2. bzoj 3295 [Cqoi2011]动态逆序对(cdq分治,BIT)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3295 [题意] n个元素依次删除m个元素,求删除元素之前序列有多少个逆序对. [思路] ...

  3. 【刷题】BZOJ 3295 [Cqoi2011]动态逆序对

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  4. bzoj 3295: [Cqoi2011]动态逆序对(树套树 or CDQ分治)

    Description 对于序列A,它的逆序对数定义为满足i<j,且Ai>Aj的数对(i,j)的个数.给1到n的一个排列,按照某种顺序依次删除m个元素,你的任务是在每次删除一个元素之前统计 ...

  5. BZOJ 3295: [Cqoi2011]动态逆序对 [CDQ分治]

    RT 传送门 首先可以看成倒着插入,求逆序对数 每个数分配时间(注意每个数都要一个时间)$t$,$x$位置,$y$数值 $CDQ(l,r)$时归并排序$x$ 然后用$[l,mid]$的加入更新$[mi ...

  6. BZOJ 3295 [CQOI2011]动态逆序对 (三维偏序CDQ+树状数组)

    题目大意: 题面传送门 还是一道三维偏序题 每次操作都可以看成这样一个三元组 $<x,w,t>$ ,操作的位置,权值,修改时间 一开始的序列看成n次插入操作 我们先求出不删除时的逆序对总数 ...

  7. BZOJ 3295 [Cqoi2011]动态逆序对 ——CDQ分治

    时间.位置.数字为三个属性. 排序时间,CDQ位置,树状数组处理数字即可. #include <cstdio> #include <cstring> #include < ...

  8. 【BZOJ 3295】动态逆序对 - 分块+树状数组

    题目描述 给定一个1~n的序列,然后m次删除元素,每次删除之前询问逆序对的个数. 分析:分块+树状数组 (PS:本题的CDQ分治解法见下一篇) 首先将序列分成T块,每一块开一个树状数组,并且先把最初的 ...

  9. 【Bzoj 3295】 动态逆序对(树套树|CDQ分治)

    [题意] 每次删除一个数,然后问删除前逆序对数. [分析] 没有AC不开心.. 我的树状数组套字母树,应该是爆空间的,空间复杂度O(nlogn^2)啊..哭.. 然后就没有然后了,别人家的树套树是树状 ...

随机推荐

  1. OC字符串NSString

    ========================== 面向对象编程进阶和字符串 ========================== Δ一.类的设计模式—单例 [单例]程序允许过程中,有且仅有一块内存 ...

  2. 常用jar包用途

    jar包 用途 axis.jar SOAP引擎包 commons-discovery-0.2.jar 用来发现.查找和实现可插入式接口,提供一些一般类实例化.单件的生命周期管理的常用方法. jaxrp ...

  3. mysql一些小技巧

    1 强制命中索引:force index 某些时候查询,索引会失效,可以进行强制命中索引 2 group_concat 能将相同的行组合起来. 当然,我推荐这种操作可以在代码中操作,如果必须在特定情况 ...

  4. MongoDB使用汇总贴

    金天:学习一个新东西,就要持有拥抱的心态,如果固守在自己先前的概念体系,就会有举步维艰的感觉.应用mongodb(NoSQL)开发,首先要打破原先的关系思维.范式思维. 本文作为使用mongodb一路 ...

  5. @OneToMany---ManyToOne

    http://blog.csdn.net/gebitan505/article/details/22619175 一对多,字段只是在多的一方,SQL数据库和JAVA中不同 SQL数据库表: 多的一方: ...

  6. spring项目的 context root 修改之后,导致 WebApplicationContext 初始化两次的解决方法

    修改了 spring web 项目的 context root 为 / 之后,在启动项目时,会导致 WebApplicationContext  初始化两次,下面是其初始化日志: 第一次初始化: 四月 ...

  7. python基础(三)序列

    作者:Vamei 出处:http://www.cnblogs.com/vamei 欢迎转载,也请保留这段声明.谢谢! 谢谢thunder424纠错 sequence 序列 sequence(序列)是一 ...

  8. Linux学习书籍推荐

    入门书: <鸟哥的私房菜(基础篇)> <鸟哥的私房菜(服务篇)> <Linux命令行与Shell脚本编程大全(第2版)> <UNIX/Linux 系统管理技术 ...

  9. android apk 防止反编译技术第四篇-对抗JD-GUI

    又到周末一个人侘在家里无事可干,这就是程序员的悲哀啊.好了我们利用周末的时间继续介绍android apk防止反编译技术的另一种方法.前三篇我们讲了加壳技术(http://my.oschina.net ...

  10. 【4412嵌入式开发板学习笔记】认识uboot

    转自迅为讨论群:http://www.topeetboard.com 重要说明:这份笔记不是4412开发配套的,是我在网上看视频的时候下载上课老师的笔记后修改的.所以我试了一下笔记上的uboot命令, ...