Following Orders
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4885   Accepted: 1973

Description

Order is an important concept in mathematics and in computer science. For example, Zorn's Lemma states: ``a partially ordered set in which every chain has an upper bound contains a maximal element.'' Order is also important in reasoning about the fix-point semantics of programs.

This problem involves neither Zorn's Lemma nor fix-point semantics, but does involve order. 
Given a list of variable constraints of the form x < y, you are to write a program that prints all orderings of the variables that are consistent with the constraints.

For example, given the constraints x < y and x < z there are two orderings of the variables x, y, and z that are consistent with these constraints: x y z and x z y. 

Input

The input consists of a sequence of constraint specifications. A specification consists of two lines: a list of variables on one line followed by a list of contraints on the next line. A constraint is given by a pair of variables, where x y indicates that x < y.

All variables are single character, lower-case letters. There will be at least two variables, and no more than 20 variables in a specification. There will be at least one constraint, and no more than 50 constraints in a specification. There will be at least one, and no more than 300 orderings consistent with the contraints in a specification.

Input is terminated by end-of-file. 

Output

For each constraint specification, all orderings consistent with the constraints should be printed. Orderings are printed in lexicographical (alphabetical) order, one per line.

Output for different constraint specifications is separated by a blank line. 

Sample Input

a b f g
a b b f
v w x y z
v y x v z v w v

Sample Output

abfg
abgf
agbf
gabf wxzvy
wzxvy
xwzvy
xzwvy
zwxvy
zxwvy

Source

--------------------------------------
所有方案,需要回溯,用Kahn比较好
L← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do
remove a node n from S
insert n into L
foreach node m with an edge e from nto m do
remove edge e from thegraph
ifm has no other incoming edges then
insert m into S
if graph has edges then
return error (graph has at least onecycle)
else
return L (a topologically sortedorder)

就是找入度为0的点(最好用个stack,循环的话复杂的太高),加入topo头部

感觉比dfs好,复杂度都是O(V+E)

本题回溯所有方案,复杂度乘上一个V;V很小,不用stack也可以;用个id比较方便吧

字符读入太坑人.........

//
// main.cpp
// poj1270
//
// Created by Candy on 9/11/16.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=,M=;
char s[];
int a[N],num=,n=,id[N];
int ch[N][N],topo[N],ind[N]; void print(){
for(int i=;i<=n;i++) printf("%c",(char)topo[i]+'a'-);
printf("\n");
}
void dfs(int d){ //printf("dfs %d\n",d);
if(d==n+){print();return;}
for(int i=;i<=n;i++)
if(ind[i]==){
ind[i]--; topo[d]=a[i];
for(int j=;j<=ch[i][];j++) ind[ch[i][j]]--;
dfs(d+);
for(int j=;j<=ch[i][];j++) ind[ch[i][j]]++;
ind[i]++;
}
}
int main(int argc, const char * argv[]) {
while(fgets(s,,stdin)){ //printf("p %s\n",s);
n=;
memset(topo,,sizeof(topo));
memset(ch,,sizeof(ch));
memset(ind,,sizeof(ind));
int len=strlen(s); //printf("len %d\n",len);
for(int i=;i<len;i++)
if(s[i]>='a'&&s[i]<='z') a[++n]=s[i]-'a'+;
sort(a+,a++n);
for(int i=;i<=n;i++) id[a[i]]=i; fgets(s,,stdin);
len=strlen(s);
int last=;
for(int i=;i<=len;i++)
if(s[i]>='a'&&s[i]<='z'){
int t=s[i]-'a'+;
t=id[t];
if(last==) last=t;
else{ch[last][++ch[last][]]=t;ind[t]++;last=;}
}
dfs();
printf("\n");
}
return ;
}

POJ1270 Following Orders[拓扑排序所有方案 Kahn]的更多相关文章

  1. POJ 1270 Following Orders (拓扑排序,dfs枚举)

    题意:每组数据给出两行,第一行给出变量,第二行给出约束关系,每个约束包含两个变量x,y,表示x<y.    要求:当x<y时,x排在y前面.让你输出所有满足该约束的有序集. 思路:用拓扑排 ...

  2. POJ 1270 Following Orders 拓扑排序

    http://poj.org/problem?id=1270 题目大意: 给你一串序列,然后再给你他们部分的大小,要求你输出他们从小到大的所有排列. 如a b f g 然后 a<b ,b< ...

  3. POJ1270 Following Orders (拓扑排序)

    Following Orders Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4254   Accepted: 1709 ...

  4. ACM/ICPC 之 拓扑排序+DFS(POJ1128(ZOJ1083)-POJ1270)

    两道经典的同类型拓扑排序+DFS问题,第二题较第一题简单,其中的难点在于字典序输出+建立单向无环图,另外理解题意是最难的难点,没有之一... POJ1128(ZOJ1083)-Frame Stacki ...

  5. AOV网络和Kahn算法拓扑排序

    1.AOV与DAG 活动网络可以用来描述生产计划.施工过程.生产流程.程序流程等工程中各子工程的安排问题.   一般一个工程可以分成若干个子工程,这些子工程称为活动(Activity).完成了这些活动 ...

  6. poj1270Following Orders(拓扑排序+dfs回溯)

    题目链接: 啊哈哈.点我点我 题意是: 第一列给出全部的字母数,第二列给出一些先后顺序. 然后按字典序最小的方式输出全部的可能性.. . 思路: 整体来说是拓扑排序.可是又非常多细节要考虑.首先要按字 ...

  7. 拓扑排序+DFS(POJ1270)

    [日后练手](非解题) 拓扑排序+DFS(POJ1270) #include<stdio.h> #include<iostream> #include<cstdio> ...

  8. POJ 1270 Following Orders(拓扑排序)

    题意: 给两行字符串,第一行为一组变量,第二行时一组约束(每个约束包含两个变量,x y 表示 x <y).输出满足约束的所有字符串序列. 思路:拓扑排序 + 深度优先搜索(DFS算法) 课本代码 ...

  9. 2017-2018 ACM-ICPC NEERC B题Berland Army 拓扑排序+非常伤脑筋的要求

    题目链接:http://codeforces.com/contest/883/problem/B There are n military men in the Berland army. Some ...

随机推荐

  1. jQuery.clean()方法源码分析(一)

    在jQuery 1.7.1中调用jQuery.clean()方法的地方有三处,第一次就是在我之前的随笔分析jQuery.buildFramgment()方法里面的,其实还是构造函数的一部分,在处理诸如 ...

  2. AngularJS学习笔记之依赖注入

    最近在看AngularJS权威指南,由于各种各样的原因(主要是因为我没有money,好讨厌的有木有......),于是我选择了网上下载电子版的(因为它不要钱,哈哈...),字体也蛮清晰的,总体效果还不 ...

  3. MyEclipse 2015免费在线公开课,2月5日开讲

    MyEclipse 2015免费在线公开课,2月5日开讲,由MyEclipse官方高级PM Brian Fernandes 主讲. 主讲内容: 更好地支持javascript和技术模块 全新的REST ...

  4. Android SQL语句实现数据库的增删改查

    本文介绍android中的数据库的增删改查 复习sql语法: * 增 insert into info (name,phone) values ('wuyudong','111') * 删 delet ...

  5. android MediaPlayer API大全已经方法详解(转载)

    通过这张图,我们可以知道一个MediaPlayer对象有以下的状态: 1)当一个MediaPlayer对象被刚刚用new操作符创建或是调用了reset()方法后,它就处于Idle状态.当调用了rele ...

  6. Android对话框

    这周过的实在是艰辛,自打这周二起我的本本就开始闹"罢工",最后还是重装系统了事. . .   只是可怜了我的那些被格了的软件(悲伤辣么大)!  往事不要再提,人生几度风雨... 简 ...

  7. Android Studio 打包签名发布New Key Store

    Key store path:存放路径 Key Alias:别名 Validity(years):有效期 Certificate:证书 First and Last Name: Organizatio ...

  8. 使用mvn生成webapp失败,尚未找到原因

    执行命令: mvn archetype:create -DgroupId=com.jd.ads.test -DartifactId=testTools -DarchetypeArtifactId=ma ...

  9. js去掉字符串前后空格的五种方法

    转载 :http://www.2cto.com/kf/201204/125943.html 第一种:循环检查替换[javascript]//供使用者调用  function trim(s){  ret ...

  10. MVC WebAPI 三层分布式框架开发

    版权声明:本文为博主原创文章,未经博主允许不得转载. 前言:SOA(面向服务的架构)是目前企业应用开发过程中普遍采用的技术,基于MVC WebAPI三层分布式框架开发,以此适用于企业信息系统的业务处理 ...