Following Orders
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 4885   Accepted: 1973

Description

Order is an important concept in mathematics and in computer science. For example, Zorn's Lemma states: ``a partially ordered set in which every chain has an upper bound contains a maximal element.'' Order is also important in reasoning about the fix-point semantics of programs.

This problem involves neither Zorn's Lemma nor fix-point semantics, but does involve order. 
Given a list of variable constraints of the form x < y, you are to write a program that prints all orderings of the variables that are consistent with the constraints.

For example, given the constraints x < y and x < z there are two orderings of the variables x, y, and z that are consistent with these constraints: x y z and x z y. 

Input

The input consists of a sequence of constraint specifications. A specification consists of two lines: a list of variables on one line followed by a list of contraints on the next line. A constraint is given by a pair of variables, where x y indicates that x < y.

All variables are single character, lower-case letters. There will be at least two variables, and no more than 20 variables in a specification. There will be at least one constraint, and no more than 50 constraints in a specification. There will be at least one, and no more than 300 orderings consistent with the contraints in a specification.

Input is terminated by end-of-file. 

Output

For each constraint specification, all orderings consistent with the constraints should be printed. Orderings are printed in lexicographical (alphabetical) order, one per line.

Output for different constraint specifications is separated by a blank line. 

Sample Input

a b f g
a b b f
v w x y z
v y x v z v w v

Sample Output

abfg
abgf
agbf
gabf wxzvy
wzxvy
xwzvy
xzwvy
zwxvy
zxwvy

Source

--------------------------------------
所有方案,需要回溯,用Kahn比较好
L← Empty list that will contain the sorted elements
S ← Set of all nodes with no incoming edges
while S is non-empty do
remove a node n from S
insert n into L
foreach node m with an edge e from nto m do
remove edge e from thegraph
ifm has no other incoming edges then
insert m into S
if graph has edges then
return error (graph has at least onecycle)
else
return L (a topologically sortedorder)

就是找入度为0的点(最好用个stack,循环的话复杂的太高),加入topo头部

感觉比dfs好,复杂度都是O(V+E)

本题回溯所有方案,复杂度乘上一个V;V很小,不用stack也可以;用个id比较方便吧

字符读入太坑人.........

//
// main.cpp
// poj1270
//
// Created by Candy on 9/11/16.
// #include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
using namespace std;
const int N=,M=;
char s[];
int a[N],num=,n=,id[N];
int ch[N][N],topo[N],ind[N]; void print(){
for(int i=;i<=n;i++) printf("%c",(char)topo[i]+'a'-);
printf("\n");
}
void dfs(int d){ //printf("dfs %d\n",d);
if(d==n+){print();return;}
for(int i=;i<=n;i++)
if(ind[i]==){
ind[i]--; topo[d]=a[i];
for(int j=;j<=ch[i][];j++) ind[ch[i][j]]--;
dfs(d+);
for(int j=;j<=ch[i][];j++) ind[ch[i][j]]++;
ind[i]++;
}
}
int main(int argc, const char * argv[]) {
while(fgets(s,,stdin)){ //printf("p %s\n",s);
n=;
memset(topo,,sizeof(topo));
memset(ch,,sizeof(ch));
memset(ind,,sizeof(ind));
int len=strlen(s); //printf("len %d\n",len);
for(int i=;i<len;i++)
if(s[i]>='a'&&s[i]<='z') a[++n]=s[i]-'a'+;
sort(a+,a++n);
for(int i=;i<=n;i++) id[a[i]]=i; fgets(s,,stdin);
len=strlen(s);
int last=;
for(int i=;i<=len;i++)
if(s[i]>='a'&&s[i]<='z'){
int t=s[i]-'a'+;
t=id[t];
if(last==) last=t;
else{ch[last][++ch[last][]]=t;ind[t]++;last=;}
}
dfs();
printf("\n");
}
return ;
}

POJ1270 Following Orders[拓扑排序所有方案 Kahn]的更多相关文章

  1. POJ 1270 Following Orders (拓扑排序,dfs枚举)

    题意:每组数据给出两行,第一行给出变量,第二行给出约束关系,每个约束包含两个变量x,y,表示x<y.    要求:当x<y时,x排在y前面.让你输出所有满足该约束的有序集. 思路:用拓扑排 ...

  2. POJ 1270 Following Orders 拓扑排序

    http://poj.org/problem?id=1270 题目大意: 给你一串序列,然后再给你他们部分的大小,要求你输出他们从小到大的所有排列. 如a b f g 然后 a<b ,b< ...

  3. POJ1270 Following Orders (拓扑排序)

    Following Orders Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 4254   Accepted: 1709 ...

  4. ACM/ICPC 之 拓扑排序+DFS(POJ1128(ZOJ1083)-POJ1270)

    两道经典的同类型拓扑排序+DFS问题,第二题较第一题简单,其中的难点在于字典序输出+建立单向无环图,另外理解题意是最难的难点,没有之一... POJ1128(ZOJ1083)-Frame Stacki ...

  5. AOV网络和Kahn算法拓扑排序

    1.AOV与DAG 活动网络可以用来描述生产计划.施工过程.生产流程.程序流程等工程中各子工程的安排问题.   一般一个工程可以分成若干个子工程,这些子工程称为活动(Activity).完成了这些活动 ...

  6. poj1270Following Orders(拓扑排序+dfs回溯)

    题目链接: 啊哈哈.点我点我 题意是: 第一列给出全部的字母数,第二列给出一些先后顺序. 然后按字典序最小的方式输出全部的可能性.. . 思路: 整体来说是拓扑排序.可是又非常多细节要考虑.首先要按字 ...

  7. 拓扑排序+DFS(POJ1270)

    [日后练手](非解题) 拓扑排序+DFS(POJ1270) #include<stdio.h> #include<iostream> #include<cstdio> ...

  8. POJ 1270 Following Orders(拓扑排序)

    题意: 给两行字符串,第一行为一组变量,第二行时一组约束(每个约束包含两个变量,x y 表示 x <y).输出满足约束的所有字符串序列. 思路:拓扑排序 + 深度优先搜索(DFS算法) 课本代码 ...

  9. 2017-2018 ACM-ICPC NEERC B题Berland Army 拓扑排序+非常伤脑筋的要求

    题目链接:http://codeforces.com/contest/883/problem/B There are n military men in the Berland army. Some ...

随机推荐

  1. CSS中兼容的一面-----Hack

    国庆了,出去玩耍,也有好长时间没有更新博客了.. 今天就和大家共享一篇技术博文吧.. CSS中兼容的一面-----Hack技术大全 兼容范围: IE:6.0+,FireFox:2.0+,Opera 1 ...

  2. HTML 文本格式化实例

    一,文本格式化:此例演示如何在一个 HTML 文件中对文本进行格式化. <html> <body> <b>This text is bold</b> & ...

  3. 学习zepto.js(对象方法)[1]

    zepto也是使用的链式操作,链式操作:函数返回调用函数的对象. 但并不是所有的对象方法都可以进行链式操作,举几个例子:.size(),.html()|.text()//不传参数的情况下; 若非特殊说 ...

  4. Jquery属性获取——attr()与prop()

    今天在项目中使用<select></select>下拉菜单时,使用juery操作,使页面加载完菜单默认选中的值为2,我一开始的操作如下: <!--html部分--> ...

  5. chrome developer tool—— 断点调试篇

    断点,调试器的功能之一,可以让程序中断在需要的地方,从而方便其分析.也可以在一次调试中设置断点,下一次只需让程序自动运行到设置断点位置,便可在上次设置断点的位置中断下来,极大的方便了操作,同时节省了时 ...

  6. SharePoint 2013 修改表单认证登录页面

    前 言 之前的博客我们介绍了如何为SharePoint配置表单登陆,但是,登陆页面是丑.很丑.非常丑.特别非常丑!我们现在就介绍一下如何定制SharePoint表单登陆页面! SharePoint 表 ...

  7. Emacs学习心得之 基础操作

    作者:枫雪庭 出处:http://www.cnblogs.com/FengXueTing-px/ 欢迎转载 Emacs学习心得之 基础操作 1.前言与学习计划2.Emacs基础操作 一. 前言与学习计 ...

  8. 生成iOSAPP的二维码

    1.打开iTunes,在"应用"里面搜索要找的APP 2.右键要生成二维码的APP,选择"拷贝链接" 3.百度一个二维码生成器 4.把刚才拷贝的链接粘贴进去,点 ...

  9. 如何自定义ViewGroup

    依照惯例,先从一个例子说起. 很简单,3张扑克牌叠在一起显示.这个布局效果该如何实现呢?有的同学该说了,这很简单啊,用RelativeLayout或FrameLayout,然后为每一个扑克牌设置mar ...

  10. Android 获取图片exif信息

    使用android api读取图片的exif信息 布局代码: <LinearLayout xmlns:android="http://schemas.android.com/apk/r ...