入门大数据---Spark_Structured API的基本使用
一、创建DataFrame和Dataset
1.1 创建DataFrame
Spark 中所有功能的入口点是 SparkSession,可以使用 SparkSession.builder() 创建。创建后应用程序就可以从现有 RDD,Hive 表或 Spark 数据源创建 DataFrame。示例如下:
val spark = SparkSession.builder().appName("Spark-SQL").master("local[2]").getOrCreate()
val df = spark.read.json("/usr/file/json/emp.json")
df.show()
// 建议在进行 spark SQL 编程前导入下面的隐式转换,因为 DataFrames 和 dataSets 中很多操作都依赖了隐式转换
import spark.implicits._
可以使用 spark-shell 进行测试,需要注意的是 spark-shell 启动后会自动创建一个名为 spark 的 SparkSession,在命令行中可以直接引用即可:

1.2 创建Dataset
Spark 支持由内部数据集和外部数据集来创建 DataSet,其创建方式分别如下:
1. 由外部数据集创建
// 1.需要导入隐式转换
import spark.implicits._
// 2.创建 case class,等价于 Java Bean
case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,
hiredate: String, job: String, mgr: Long, sal: Double)
// 3.由外部数据集创建 Datasets
val ds = spark.read.json("/usr/file/emp.json").as[Emp]
ds.show()
2. 由内部数据集创建
// 1.需要导入隐式转换
import spark.implicits._
// 2.创建 case class,等价于 Java Bean
case class Emp(ename: String, comm: Double, deptno: Long, empno: Long,
hiredate: String, job: String, mgr: Long, sal: Double)
// 3.由内部数据集创建 Datasets
val caseClassDS = Seq(Emp("ALLEN", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0),
Emp("JONES", 300.0, 30, 7499, "1981-02-20 00:00:00", "SALESMAN", 7698, 1600.0))
.toDS()
caseClassDS.show()
1.3 由RDD创建DataFrame
Spark 支持两种方式把 RDD 转换为 DataFrame,分别是使用反射推断和指定 Schema 转换:
1. 使用反射推断
// 1.导入隐式转换
import spark.implicits._
// 2.创建部门类
case class Dept(deptno: Long, dname: String, loc: String)
// 3.创建 RDD 并转换为 dataSet
val rddToDS = spark.sparkContext
.textFile("/usr/file/dept.txt")
.map(_.split("\t"))
.map(line => Dept(line(0).trim.toLong, line(1), line(2)))
.toDS() // 如果调用 toDF() 则转换为 dataFrame
2. 以编程方式指定Schema
import org.apache.spark.sql.Row
import org.apache.spark.sql.types._
// 1.定义每个列的列类型
val fields = Array(StructField("deptno", LongType, nullable = true),
StructField("dname", StringType, nullable = true),
StructField("loc", StringType, nullable = true))
// 2.创建 schema
val schema = StructType(fields)
// 3.创建 RDD
val deptRDD = spark.sparkContext.textFile("/usr/file/dept.txt")
val rowRDD = deptRDD.map(_.split("\t")).map(line => Row(line(0).toLong, line(1), line(2)))
// 4.将 RDD 转换为 dataFrame
val deptDF = spark.createDataFrame(rowRDD, schema)
deptDF.show()
1.4 DataFrames与Datasets互相转换
Spark 提供了非常简单的转换方法用于 DataFrame 与 Dataset 间的互相转换,示例如下:
# DataFrames转Datasets
scala> df.as[Emp]
res1: org.apache.spark.sql.Dataset[Emp] = [COMM: double, DEPTNO: bigint ... 6 more fields]
# Datasets转DataFrames
scala> ds.toDF()
res2: org.apache.spark.sql.DataFrame = [COMM: double, DEPTNO: bigint ... 6 more fields]
二、Columns列操作
2.1 引用列
Spark 支持多种方法来构造和引用列,最简单的是使用 col() 或 column() 函数。
col("colName")
column("colName")
// 对于 Scala 语言而言,还可以使用$"myColumn"和'myColumn 这两种语法糖进行引用。
df.select($"ename", $"job").show()
df.select('ename, 'job).show()
2.2 新增列
// 基于已有列值新增列
df.withColumn("upSal",$"sal"+1000)
// 基于固定值新增列
df.withColumn("intCol",lit(1000))
2.3 删除列
// 支持删除多个列
df.drop("comm","job").show()
2.4 重命名列
df.withColumnRenamed("comm", "common").show()
需要说明的是新增,删除,重命名列都会产生新的 DataFrame,原来的 DataFrame 不会被改变。
三、使用Structured API进行基本查询
// 1.查询员工姓名及工作
df.select($"ename", $"job").show()
// 2.filter 查询工资大于 2000 的员工信息
df.filter($"sal" > 2000).show()
// 3.orderBy 按照部门编号降序,工资升序进行查询
df.orderBy(desc("deptno"), asc("sal")).show()
// 4.limit 查询工资最高的 3 名员工的信息
df.orderBy(desc("sal")).limit(3).show()
// 5.distinct 查询所有部门编号
df.select("deptno").distinct().show()
// 6.groupBy 分组统计部门人数
df.groupBy("deptno").count().show()
四、使用Spark SQL进行基本查询
4.1 Spark SQL基本使用
// 1.首先需要将 DataFrame 注册为临时视图
df.createOrReplaceTempView("emp")
// 2.查询员工姓名及工作
spark.sql("SELECT ename,job FROM emp").show()
// 3.查询工资大于 2000 的员工信息
spark.sql("SELECT * FROM emp where sal > 2000").show()
// 4.orderBy 按照部门编号降序,工资升序进行查询
spark.sql("SELECT * FROM emp ORDER BY deptno DESC,sal ASC").show()
// 5.limit 查询工资最高的 3 名员工的信息
spark.sql("SELECT * FROM emp ORDER BY sal DESC LIMIT 3").show()
// 6.distinct 查询所有部门编号
spark.sql("SELECT DISTINCT(deptno) FROM emp").show()
// 7.分组统计部门人数
spark.sql("SELECT deptno,count(ename) FROM emp group by deptno").show()
4.2 全局临时视图
上面使用 createOrReplaceTempView 创建的是会话临时视图,它的生命周期仅限于会话范围,会随会话的结束而结束。
你也可以使用 createGlobalTempView 创建全局临时视图,全局临时视图可以在所有会话之间共享,并直到整个 Spark 应用程序终止后才会消失。全局临时视图被定义在内置的 global_temp 数据库下,需要使用限定名称进行引用,如 SELECT * FROM global_temp.view1。
// 注册为全局临时视图
df.createGlobalTempView("gemp")
// 使用限定名称进行引用
spark.sql("SELECT ename,job FROM global_temp.gemp").show()
参考资料
Spark SQL, DataFrames and Datasets Guide > Getting Started
入门大数据---Spark_Structured API的基本使用的更多相关文章
- 入门大数据---Flink学习总括
第一节 初识 Flink 在数据激增的时代,催生出了一批计算框架.最早期比较流行的有MapReduce,然后有Spark,直到现在越来越多的公司采用Flink处理.Flink相对前两个框架真正做到了高 ...
- 入门大数据---SparkSQL外部数据源
一.简介 1.1 多数据源支持 Spark 支持以下六个核心数据源,同时 Spark 社区还提供了多达上百种数据源的读取方式,能够满足绝大部分使用场景. CSV JSON Parquet ORC JD ...
- 入门大数据---Hadoop是什么?
简单概括:Hadoop是由Apache组织使用Java语言开发的一款应对大数据存储和计算的分布式开源框架. Hadoop的起源 2003-2004年,Google公布了部分GFS和MapReduce思 ...
- 入门大数据---Kylin是什么?
一.Kylin是什么? Apache Kylin是一个开源的.分布式的分析型数据仓库,提供Hadoop/Spark 上的SQL查询接口及多维度分析(OLAP)能力以支持超大规模的数据,最初由eBay开 ...
- 入门大数据---Spark_Streaming整合Flume
一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 ...
- 入门大数据---MapReduce-API操作
一.环境 Hadoop部署环境: Centos3.10.0-327.el7.x86_64 Hadoop2.6.5 Java1.8.0_221 代码运行环境: Windows 10 Hadoop 2.6 ...
- 入门大数据---Flume整合Kafka
一.背景 先说一下,为什么要使用 Flume + Kafka? 以实时流处理项目为例,由于采集的数据量可能存在峰值和峰谷,假设是一个电商项目,那么峰值通常出现在秒杀时,这时如果直接将 Flume 聚合 ...
- 入门大数据---安装ClouderaManager,CDH和Impala,Hue,oozie等服务
1.要求和支持的版本 (PS:我使用的环境,都用加粗标识了.) 1.1 支持的操作系统版本 操作系统 版本 RHEL/CentOS/OL with RHCK kernel 7.6, 7.5, 7.4, ...
- 入门大数据---Spark整体复习
一. Spark简介 1.1 前言 Apache Spark是一个基于内存的计算框架,它是Scala语言开发的,而且提供了一站式解决方案,提供了包括内存计算(Spark Core),流式计算(Spar ...
随机推荐
- 50个SQL语句(MySQL版) 问题八
--------------------------表结构-------------------------- student(StuId,StuName,StuAge,StuSex) 学生表 tea ...
- Java实现蓝桥杯历届试题高僧斗法
历届试题 高僧斗法 时间限制:1.0s 内存限制:256.0MB 提交此题 锦囊1 锦囊2 问题描述 古时丧葬活动中经常请高僧做法事.仪式结束后,有时会有"高僧斗法"的趣味节目,以 ...
- Java实现 蓝桥杯VIP 算法训练 瓷砖铺放
[题目描述]: 有一长度为N(1< =N< =10)的地板,给定两种不同瓷砖:一种长度为1,另一种长度为2,数目不限.要将这个长度为N的地板铺满,一共有多少种不同的铺法? 例如,长度为4的 ...
- Java实现 蓝桥杯 生命游戏
标题:生命游戏 康威生命游戏是英国数学家约翰·何顿·康威在1970年发明的细胞自动机. 这个游戏在一个无限大的2D网格上进行. 初始时,每个小方格中居住着一个活着或死了的细胞. 下一时刻每个细胞的状态 ...
- 弄懂Java的自增变量
首先我们来看一段代码: public static void main(String[] args){ int i = 1; i = i++; //第一行 int j = i++; //第二行 int ...
- Flutter upgrade更新版本引发的无法启动调试APP的错误 target:kernel_snapshot failed”
前言 我的主机上的Flutter 本地的分支是在 beta,因为去年想尝鲜Flutter Web,所以一直没切回来stable分支. 早上打开VSCode,右下角弹出了Flutter upgrade的 ...
- android日常开发总结的技术经验60条
全部Activity可继承自BaseActivity,便于统一风格与处理公共事件,构建对话框统一构建器的建立,万一需要整体变动,一处修改到处有效. 数据库表段字段常量和SQL逻辑分离,更清晰,建议使用 ...
- 基于EntityFramework 6 Code First实现动态建库,分库,数据库自动迁移
一.前言 公司原本有一个"xx系统",ORM使用EntityFramework,Code First模式.该系统是针对某个客户企业的,现要求该系统支持多个企业使用,但是又不能给每个 ...
- 下拉式菜单中的内容堆叠(ul型)
今天使用ul创建下拉式菜单,菜单中的内容堆在了一起. 这是我的html代码 <!DOCTYPE html> <html lang="en"> <hea ...
- web开发网络请求到数据的整合办法
开发中向服务器请求到的数据是特别复杂的,需要从中抽离出需要展示的数据进行展示个和交互. 思路: 先将请求到的复杂数据传递到一个类A中,从类A里抽离出需要的数据.需要展示数据的地方,面向类A开发,类A关 ...