tf.nn.depthwise_conv2d(
input,
filter,
strides,
padding,
rate=None,
name=None,
data_format=None
)
参数:
input:4-D,形状根据data_format得出
filter:4-D,形状为[filter_height, filter_width, in_channels, channel_multiplier]
strides:1-D,大小为4,input每个尺寸的滑动窗口的步幅
padding:一个字符串,可以是'VALID'或者'SAME',填充算法
rate:1-D,大小为2;我们在等值卷积中在height和width维度上对输入值进行采样的扩张率.如果它大于1,则步幅的所有值必须为1
name:此操作的名称(可选).
data_format:输入的数据格式,可以是“NHWC”(默认)或“NCHW” 返回:
4-DTensor, 形状工具data_format得到.例如,对于“NHWC”格式,形状是[batch, out_height, out_width, in_channels * channel_multiplier]
深度 2-D 卷积.

给定4D输入张量(数据格式为'NHWC'或'NCHW')和形状为[filter_height, filter_width, in_channels, channel_multiplier]的滤波器张量,
它包含深度为1的in_channels卷积滤波器,depthwise_conv2d对每个输入通道应用不同的滤波器(从1通道扩展到每个通道channel_multiplier),
然后将结果连接在一起.输出有in_channels * channel_multiplier个通道.
必须有strides[0] = strides[3] = 1.对于相同水平和垂直步幅的最常见情况,strides = [1, stride, stride, 1].
如果rate中的任何值大于1,我们执行等值深度卷积,在这种情况下,strides张量中的所有值必须等于1. output[b, i, j, k * channel_multiplier + q] = sum_{di, dj}
filter[di, dj, k, q] * input[b, strides[1] * i + rate[0] * di,strides[2] * j + rate[1] * dj, k]

tf.nn.depthwise_conv2d 卷积的更多相关文章

  1. 【Tensorflow】tf.nn.depthwise_conv2d如何实现深度卷积?

    版权声明:本文为博主原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接和本声明. 本文链接:https://blog.csdn.net/mao_xiao_feng/article/ ...

  2. tensorflow 之tf.nn.depthwise_conv2d and separable_conv2d实现及原理

    Depthwise Separable Convolution 1.简介 Depthwise Separable Convolution 是谷歌公司于2017年的CVPR中在论文”Xception: ...

  3. 深度学习原理与框架-Tensorflow卷积神经网络-卷积神经网络mnist分类 1.tf.nn.conv2d(卷积操作) 2.tf.nn.max_pool(最大池化操作) 3.tf.nn.dropout(执行dropout操作) 4.tf.nn.softmax_cross_entropy_with_logits(交叉熵损失) 5.tf.truncated_normal(两个标准差内的正态分布)

    1. tf.nn.conv2d(x, w, strides=[1, 1, 1, 1], padding='SAME')  # 对数据进行卷积操作 参数说明:x表示输入数据,w表示卷积核, stride ...

  4. tf.nn.conv2d卷积函数之图片轮廓提取

    一.tensorflow中二维卷积函数的参数含义:def conv2d(input, filter, strides, padding, use_cudnn_on_gpu=True, data_for ...

  5. tf.nn.conv2d 卷积

    tf.nn.conv2d(input, filter, strides, padding, use_cudnn_on_gpu=None, name=None) 第一个参数input:指需要做卷积的输入 ...

  6. 【Tensorflow】tf.nn.atrous_conv2d如何实现空洞卷积?膨胀卷积

    介绍关于空洞卷积的理论可以查看以下链接,这里我们不详细讲理论: 1.Long J, Shelhamer E, Darrell T, et al. Fully convolutional network ...

  7. tf.nn.conv2d。卷积函数

    tf.nn.conv2d是TensorFlow里面实现卷积的函数,参考文档对它的介绍并不是很详细,实际上这是搭建卷积神经网络比较核心的一个方法,非常重要 tf.nn.conv2d(input, fil ...

  8. 深度学习原理与框架-图像补全(原理与代码) 1.tf.nn.moments(求平均值和标准差) 2.tf.control_dependencies(先执行内部操作) 3.tf.cond(判别执行前或后函数) 4.tf.nn.atrous_conv2d 5.tf.nn.conv2d_transpose(反卷积) 7.tf.train.get_checkpoint_state(判断sess是否存在

    1. tf.nn.moments(x, axes=[0, 1, 2])  # 对前三个维度求平均值和标准差,结果为最后一个维度,即对每个feature_map求平均值和标准差 参数说明:x为输入的fe ...

  9. 深度学习原理与框架- tf.nn.atrous_conv2d(空洞卷积) 问题:空洞卷积增加了卷积核的维度,为什么不直接使用7*7呢

    空洞卷积, 从图中可以看出,对于一个3*3的卷积,可以通过使用增加卷积的空洞的个数,来获得较大的感受眼, 从第一幅图中可以看出3*3的卷积,可以通过补零的方式,变成7*7的感受眼,这里补零的个数为1, ...

随机推荐

  1. 【Weiss】【第03章】双链表例程

    双链表因为多了个前向指针,需要考虑的特殊因素多了一倍 所以中间插入(这儿没写)和中间删除会比较复杂. 其它倒没什么特别的,代码如下. 测试代码 #include <iostream> #i ...

  2. JavaScript 模式》读书笔记(3)— 字面量和构造函数2

    上一篇啊,我们聊了聊字面量对象和自定义构造函数.这一篇,我们继续,来聊聊new和数组字面量. 三.强制使用new的模式 要知道,构造函数,只是一个普通的函数,只不过它却是以new的方式调用.如果在调用 ...

  3. Unity 游戏框架:UI 管理神器 UI Kit

    UI Kit 快速入门 首先我们来进行 UI Kit 的快速入门 制作一个界面的,步骤如下: 准备 生成代码 逻辑编写 运行 1. 准备 先创建一个场景 TestUIHomePanel. 删除 Hie ...

  4. Windows下利用Chrome调试IOS设备页面

    本文介绍如何在 Windows 系统中连接 iOS设备 并对 Web 页面进行真机调试 必须前提 iOS设备.数据线 Node.js 环境 Chrome 浏览器 环境准备 安装Node环境 参考Nod ...

  5. hdu1175 连连看(bfs疯狂MLE和T,遂考虑dfs+剪枝)

    题目链接:http://icpc.njust.edu.cn/Problem/Hdu/1175/ 题目大意就是给出地图,上面有若干的数,相当于连连看,给了q个查询,问给出的两个位置的数能否在两次转弯以内 ...

  6. effective-java学习笔记---使用限定通配符来增加 API 的灵活性31

    在你的 API 中使用通配符类型,虽然棘手,但使得 API 更加灵活. 如果编写一个将被广泛使用的类库,正确使用通配符类型应该被认为是强制性的. 记住基本规则: producer-extends, c ...

  7. TensorFlow系列专题(九):常用RNN网络结构及依赖优化问题

    欢迎大家关注我们的网站和系列教程:http://panchuang.net/ ,学习更多的机器学习.深度学习的知识! 目录: 常用的循环神经网络结构 多层循环神经网络 双向循环神经网络 递归神经网络 ...

  8. coding++:SpringBoot 处理前台字符串日期自动转换成后台date类型的三种办法

    第(1)种: 使用@DateTimeFormat(pattern = “yyyy-MM-dd HH:mm:ss”)注解在实体字段上. 这种方式的优点是:可以灵活的定义接收的类型 缺点很明显:不能全局统 ...

  9. 【译】Java SE 14 Hotspot 虚拟机垃圾回收调优指南

    原文链接:HotSpot Virtual Machine Garbage Collection Tuning Guide,基于Java SE 14. 本文主要包括以下内容: 优化目标与策略(Ergon ...

  10. Git之旅

    ithub安装,我选择的是windows下的版本. git配置用户信息 安装完成后,还需要最后一步设置,在命令行输入: $git config --global user.name "You ...