codevs1048:

题目大意:有n堆石子排成一列,每次可合并相邻两堆,代价为两堆的重量之和,求把他们合并成一堆的最小代价。

解题思路:经典区间dp。设$f[i][j]$表示合并i~j的石子需要的最小代价。则有$f[i][j]=min(f[i][k]+f[k+1][j]+\sum\limits _{l=i}^{j}a[l])$,时间复杂度$O(n^3)$。

C++ Code:

#include<cstdio>
#include<cstring>
using namespace std;
int n,a[102],f[102][102],s[102];
int main(){
scanf("%d",&n);
memset(f,0x3f,sizeof f);
for(int i=1;i<=n;++i)scanf("%d",&a[i]),s[i]=s[i-1]+a[i],f[i][i]=0;
for(int i=n;i;--i)
for(int j=i+1;j<=n;++j)
for(int k=i;k<j;++k)
if(f[i][j]>f[i][k]+f[k+1][j]+s[j]-s[i-1])f[i][j]=f[i][k]+f[k+1][j]+s[j]-s[i-1];
printf("%d\n",f[1][n]);
return 0;
}

注意代码第9行,为什么i要倒着循环?举个栗子,如果要求f[1][10],就有f[1][10]=min(f[1][10],f[1][5]+f[6][10]+sum[1][10]),但是i才循环到1,就需要f[6][10]的结果,于是导致答案错误。而倒着循环,就可保证i+1~n的所有数据都已求完,就不会导致答案错误了。

codevs2102&&洛谷P1880:

题目大意:有n堆石子摆成环状,每次可合并相邻两堆,代价为两堆的重量之和,求把他们合并成一堆的最小代价和最大代价。

解题思路:本题除了是个环以外,和上题没什么区别。我们可以用化环为链的方法,具体的实现就是将这个环的单圈复制一遍,然后做n次上述dp即可。求最大价值就是把状态转移方程里的$min$改成$max$即可。时间复杂度$O(n^4)$,但代码运行量应该是不到这个极限的。

C++ Code:

#include<cstdio>
#include<cstring>
using namespace std;
int n,a[202],fmax[202][202],fmin[202][202],s[202],Max=0,Min=200000000;
void dp(int h){
for(int i=n;i;--i){
fmax[i+h][i+h]=fmin[i+h][i+h]=0;
for(int j=i+1;j<=n;++j){
fmax[i+h][j+h]=0;
fmin[i+h][j+h]=200000000;
for(int k=i;k<j;++k){
if(fmax[i+h][j+h]<fmax[i+h][k+h]+fmax[k+h+1][j+h]+s[j+h]-s[i+h-1])
fmax[i+h][j+h]=fmax[i+h][k+h]+fmax[k+h+1][j+h]+s[j+h]-s[i+h-1];
if(fmin[i+h][j+h]>fmin[i+h][k+h]+fmin[k+h+1][j+h]+s[j+h]-s[i+h-1])
fmin[i+h][j+h]=fmin[i+h][k+h]+fmin[k+h+1][j+h]+s[j+h]-s[i+h-1];
}
}
}
if(Max<fmax[1+h][n+h])Max=fmax[1+h][n+h];
if(Min>fmin[1+h][n+h])Min=fmin[1+h][n+h];
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;++i)scanf("%d",&a[i]),s[i]=s[i-1]+a[i];
for(int i=n+1;i<2*n;++i)
a[i]=a[i-n],s[i]=s[i-1]+a[i];
for(int i=1;i<=n;++i)
dp(i-1);
printf("%d\n%d\n",Min,Max);
return 0;
}

[codevs1048]石子归并&[codevs2102][洛谷P1880]石子归并加强版的更多相关文章

  1. 洛谷P1880 石子合并(区间DP)(环形DP)

    To 洛谷.1880 石子合并 题目描述 在一个园形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1 ...

  2. 经典DP 洛谷p1880 石子合并

    https://www.luogu.org/problemnew/show/P1880 题目 题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新 ...

  3. 洛谷P1880 石子合并(环形石子合并 区间DP)

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  4. 洛谷 P1880 石子合并

    题目描述 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石子数,记为该次合并的得分. 试设计出1个算法,计算出将N堆石子合并成1 ...

  5. 洛谷P1880 石子合并

    经典水题....... 断环为链长度乘二,求前缀和区间DP. #include <cstdio> #include <cstring> #include <algorit ...

  6. 洛谷P1880 [NOI1995]石子合并 纪中21日c组T4 2119. 【2016-12-30普及组模拟】环状石子归并

    洛谷P1880 石子合并 纪中2119. 环状石子归并 洛谷传送门 题目描述1 在一个圆形操场的四周摆放N堆石子,现要将石子有次序地合并成一堆.规定每次只能选相邻的2堆合并成新的一堆,并将新的一堆的石 ...

  7. codevs 1048/洛谷 1880:石子归并

    题目描述 Description 有n堆石子排成一列,每堆石子有一个重量w[i], 每次合并可以合并相邻的两堆石子,一次合并的代价为两堆石子的重量和w[i]+w[i+1].问安排怎样的合并顺序,能够使 ...

  8. 洛谷 P1880 [NOI1995] 石子合并(区间DP)

    传送门 https://www.cnblogs.com/violet-acmer/p/9852294.html 题解: 这道题是石子合并问题稍微升级版 这道题和经典石子合并问题的不同在于,经典的石子合 ...

  9. 洛谷 P6031 - CF1278F Cards 加强版(推式子+递推)

    洛谷题面传送门 u1s1 这个推式子其实挺套路的吧,可惜有一步没推出来看了题解 \[\begin{aligned} res&=\sum\limits_{i=0}^ni^k\dbinom{n}{ ...

随机推荐

  1. Mysql ERROR 1067: Invalid default value for 字段

    问题: //今天把一个数据库的sql文件导入到另一个数据库出现以下异常: Mysql ERROR 1067: Invalid default value for 字段 //原因是因为之前导出数据里面有 ...

  2. django.core.exceptions.ImproperlyConfigured: Application labels aren't unique, duplicates: admin

    创建了一个Django项目,且包含一个admin的app,但是在启动Django的是时候抛出了以下异常: Unhandled exception in thread started by <fu ...

  3. mybatis-plus注解版实现多表联查(sql)

    mybatis注解版实现多表联查 需求: 用户有角色,角色有权限,需要一次取用户信息包含角色信息及其对应权限 实体类: package cn.zytao.taosir.common.model.use ...

  4. 大道至简第一章读后感 Java伪代码形式

    观看了大道至简的第一章之后,从愚公移山的故事中我们可以抽象出一个项目, 下面用Java 伪代码的形式来进行编写: import java(愚公移山的故事) //愚公移山 public class yu ...

  5. java类的方法

    我前面说的都是类的属性,现在说类的方法: 类{ 属性:“类有什么” 方法:“类能做什么” } 首先我们在之前创建的学生类中添加个打印1-10数字的方法,参数是name package cuteSnow ...

  6. COGS——T 2739. 凯伦和咖啡

    http://www.cogs.pro/cogs/problem/problem.php?pid=2739 ★★☆   输入文件:coffee.in   输出文件:coffee.out   简单对比时 ...

  7. Apache Mahout 0.9、10.1、11. CardinalityException: Required cardinality 60 but got 29

      我们可以使用Apache Mahout来快速创建高效扩展性又好的机器学习应用.Mahout结合了诸如H2O算法.Scala.Spark和Hadoop MapReduce等模块,为开发人员提供了一个 ...

  8. 玩转iOS开发 - Runloop 具体解释

    Runloop 具体解释

  9. 每天学点Python之comprehensions

    每天学点Python之comprehensions 推导式能够简化对数据的处理,让代码简洁的同一时候还具有非常高的可读性.这在Python中非经常见. 列表推导式 通过列表推导式能够对列表中的全部元素 ...

  10. 打印全排列和stl::next_permutation

    打印全排列是个有点挑战的编程问题.STL提供了stl::next_permutation完美的攻克了这个问题. 可是,假设不看stl::next_permutation,尝试自己解决,怎么做? 非常自 ...