为了避免临界区的竞态条件发生,有多种手段可以达到目的。

  • 阻塞式的解决方案:synchronized,Lock

  • 非阻塞式的解决方案:原子变量

此次介绍使用阻塞式的解决方案:synchronized,来解决上述问题,即俗称的【对象锁】,它采用互斥的方式让同一时刻至多只有一个线程能持有【对象锁】,其它线程再想获取这个【对象锁】时就会阻塞住。这样就能保证拥有锁的线程可以安全的执行临界区内的代码,不用担心线程上下文切换

注意

虽然 java 中互斥和同步都可以采用 synchronized 关键字来完成,但它们还是有区别的:

  • 互斥是保证临界区的竞态条件发生,同一时刻只能有一个线程执行临界区代码

  • 同步是由于线程执行的先后、顺序不同、需要一个线程等待其它线程运行到某个点

  • synchronized 只能锁对象

1、synchronized

语法

synchronized(对象) // 线程1获得对象后, 线程2不能获得此对象,陷入阻塞(blocked)
{
临界区
}

解决上述问题(两个线程对初始值为 0 的静态变量一个做自增,一个做自减,各做 5000 次,结果是 0 吗?)

static int counter = 0;
static final Object room = new Object();

public static void main(String[] args) throws InterruptedException {
   Thread t1 = new Thread(() -> {
       for (int i = 0; i < 5000; i++) {
           synchronized (room) {
               counter++;
          }
      }
  }, "t1");

   Thread t2 = new Thread(() -> {
       for (int i = 0; i < 5000; i++) {
           synchronized (room) {
               counter--;
          }
      }
  }, "t2");

   t1.start();
   t2.start();
   t1.join();
   t2.join();
   log.debug("{}",counter);
}

输出,可以尝试运行多次,结果都是0。

2、分析

如下图所示

你可以做这样的类比:

  • synchronized(对象) 中的对象,可以想象为一个房间(room),有唯一入口(门)房间只能一次进入一人进行计算,线程 t1,t2 想象成两个人

  • 当线程 t1 执行到 synchronized(room) 时就好比 t1 进入了这个房间,并锁住了门拿走了钥匙,在门内执行 count++ 代码

  • 这时候如果 t2 也运行到了 synchronized(room) 时,它发现门被锁住了,只能在门外等待,发生了上下文切换,阻塞住了

  • 这中间即使 t1 的 cpu 时间片不幸用完,被踢出了门外(不要错误理解为锁住了对象就能一直执行下去哦),这时门还是锁住的,t1 仍拿着钥匙,t2 线程还在阻塞状态进不来,只有下次轮到 t1 自己再次获得时间片时才能开门进入

  • 当 t1 执行完 synchronized{} 块内的代码,这时候才会从 obj 房间出来并解开门上的锁,唤醒 t2 线程把钥匙给他。t2 线程这时才可以进入 obj 房间,锁住了门拿上钥匙,执行它的 count-- 代码

用图来表示

3、思考

synchronized 实际是用对象锁保证了临界区内代码的原子性,临界区内的代码对外是不可分割的,不会被线程切换所打断。

为了加深理解,请思考下面的问题

  • 如果把 synchronized(obj) 放在 for 循环的外面,如何理解?-- 原子性,意味者锁住了整个循环。

  • 如果 t1 synchronized(obj1) 而 t2 synchronized(obj2) 会怎样运作?-- 锁对象,要保护共享资源,必须对同一个对象进行加锁

  • 如果 t1 synchronized(obj) 而 t2 没有加会怎么样?如何理解?-- 锁对象,t2没有锁,就不会被阻塞,就会正常执行。要保护共享资源,所有线程都必须要枷锁。

4、面向对象改进

把需要保护的共享变量放入一个类

class Room {
   int value = 0;

   public void increment() {
       synchronized (this) {
           value++;
      }
  }

   public void decrement() {
       synchronized (this) {  // 保护自己的对象
           value--;
      }
  }

   public int get() {
       synchronized (this) {
           return value;
      }
  }
}

@Slf4j
public class Test1 {
   
   public static void main(String[] args) throws InterruptedException {
       Room room = new Room();
       Thread t1 = new Thread(() -> {
           for (int j = 0; j < 5000; j++) {
               room.increment();
          }
      }, "t1");

       Thread t2 = new Thread(() -> {
           for (int j = 0; j < 5000; j++) {
               room.decrement();
          }
      }, "t2");
       t1.start();
       t2.start();

       t1.join();
       t2.join();
       log.debug("count: {}" , room.get());
  }
}

5、方法上的 synchronized

加在成员方法上

class Test{
public synchronized void test() { }
}
等价于
class Test{
public void test() {
synchronized(this) { }
}
}

加在静态方法上

class Test{
public synchronized static void test() {

}
}
等价于
class Test{
public static void test() {
synchronized(Test.class) {  // 锁住类对象 }
}
}

不加 synchronzied 的方法就好比不遵守规则的人,不去老实排队(好比翻窗户进去的)

Java并发(十五)----synchronized解决共享的问题的更多相关文章

  1. Java并发(五):synchronized实现原理

    一.synchronized用法 Java中的同步块用synchronized标记. 同步块在Java中是同步在某个对象上(监视器对象). 所有同步在一个对象上的同步块在同时只能被一个线程进入并执行操 ...

  2. Java并发编程:synchronized

    Java并发编程:synchronized 虽然多线程编程极大地提高了效率,但是也会带来一定的隐患.比如说两个线程同时往一个数据库表中插入不重复的数据,就可能会导致数据库中插入了相同的数据.今天我们就 ...

  3. Java并发编程:Synchronized底层优化(偏向锁、轻量级锁)

    Java并发编程系列: Java 并发编程:核心理论 Java并发编程:Synchronized及其实现原理 Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) Java 并发编程 ...

  4. 【转】Java并发编程:synchronized

    一.什么时候会出现线程安全问题? 在单线程中不会出现线程安全问题,而在多线程编程中,有可能会出现同时访问同一个资源的情况,这种资源可以是各种类型的资源:一个变量.一个对象.一个文件.一个数据库表等,而 ...

  5. 4、Java并发编程:synchronized

    Java并发编程:synchronized 虽然多线程编程极大地提高了效率,但是也会带来一定的隐患.比如说两个线程同时往一个数据库表中插入不重复的数据,就可能会导致数据库中插入了相同的数据.今天我们就 ...

  6. 和朱晔一起复习Java并发(五):并发容器和同步器

    本节我们先会来复习一下java.util.concurrent下面的一些并发容器,然后再会来简单看一下各种同步器. ConcurrentHashMap和ConcurrentSkipListMap的性能 ...

  7. Java并发编程:Synchronized及其实现原理

    Java并发编程系列: Java 并发编程:核心理论 Java并发编程:Synchronized及其实现原理 Java并发编程:Synchronized底层优化(轻量级锁.偏向锁) Java 并发编程 ...

  8. java多线程系列(五)---synchronized ReentrantLock volatile Atomic 原理分析

    java多线程系列(五)---synchronized ReentrantLock volatile Atomic 原理分析 前言:如有不正确的地方,还望指正. 目录 认识cpu.核心与线程 java ...

  9. “全栈2019”Java第九十五章:方法中可以定义静态局部内部类吗?

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

  10. “全栈2019”Java第十五章:Unicode与转义字符

    难度 初级 学习时间 10分钟 适合人群 零基础 开发语言 Java 开发环境 JDK v11 IntelliJ IDEA v2018.3 文章原文链接 "全栈2019"Java第 ...

随机推荐

  1. 一篇文章带你入门HBase

    本文已收录至Github,推荐阅读 Java随想录 微信公众号:Java随想录 目录 HBase特性 Hadoop的限制 基本概念 NameSpace Table RowKey Column Time ...

  2. Rust中的变量的声明和定义

    变量的声明和定义 Rust中合法的标识符(包括变量名.函数名.triat名等)必须由数字.字母.下划线组成,而且不能以数字开头.这个和很多语言都是一样的.Rust将来也会允许其他Unicode字符作为 ...

  3. 深度学习中的循环神经网络”在Transformer中的应用

    目录 深度学习中的"循环神经网络"在Transformer中的应用 背景介绍 文章目的 目标受众 技术原理及概念 基本概念解释 相关技术比较 实现步骤与流程 准备工作:环境配置与依 ...

  4. ResNet:RevolutionizingDeepLearningforImageRecognition

    目录 1. 引言 2. 技术原理及概念 3. 实现步骤与流程 3.1 准备工作:环境配置与依赖安装 3.2 核心模块实现 3.3 集成与测试 3.4 优化与改进 4. 示例与应用 ResNet: Re ...

  5. R语言中的跨平台支持:如何在Windows、MacOS和Linux上使用R语言进行数据分析和可视化

    目录 当今数据科学领域,R语言已经成为了数据分析和可视化的流行工具.R语言具有强大的功能和灵活性,使得它可以在各种不同的平台上运行,包括Windows.MacOS和Linux.因此,本文将介绍R语言中 ...

  6. 如何构建您的第一部AWS数据库服务

    目录 2.1. 基本概念解释 2.2. 技术原理介绍 2.3. 相关技术比较 实现步骤与流程 2.3.1 准备工作:环境配置与依赖安装 2.3.2 核心模块实现 2.3.3 集成与测试 4. 应用示例 ...

  7. springboot使用Websocket写一个聊天室

    1 <!--websocket 依赖--> 2 <dependency> 3 <groupId>org.springframework.boot</group ...

  8. GGTalk 开源即时通讯系统源码剖析之:数据库设计

    自从<开源即时通讯GGTalk 8.0发布,增加Linux客户端,支持在统信UOS.银河麒麟上运行!>一文在博客园发布后,有园友联系我QQ,说能不能整理个更系统更详细地介绍GGTalk源码 ...

  9. Linux中常用数据库管理系统之MariaDB

    Linux中常用数据库管理系统之MariaDB 我们生活在信息化时代,经常要跟数据打交道,它在我们的日常生活中无处不在,比如手机支付,微信聊天,淘宝购物,使用的这些在后台都会对应一个叫数据库的存在.数 ...

  10. 为什么使用ioutil.ReadAll 函数需要注意

    1. 引言 当我们需要将数据一次性加载到内存中,ioutil.ReadAll 函数是一个方便的选择,但是ioutil.ReadAll 的使用是需要注意的. 在这篇文章中,我们将首先对ioutil.Re ...