Jensen 不等式定义

若 \(f(x)\) 为区间 \(I\) 上的下凸函数,则对于任意 \(x_{i} \in I\) 和满足 \(\displaystyle\sum_{i=1}^{n} \lambda_{i} = 1\) 的 \(\lambda_{i} \gt 0 \left( i = 1, 2, \cdots, n \right)\),成立

\[f \left( \sum_{i=1}^{n} \lambda_{i} x_{i} \right) \leqslant \sum_{i=1}^{n} \lambda_{i}f(x_{i})
\]

特别地,取 \(\displaystyle\lambda_{i} = \frac{1}{n} \left( i = 1, 2, \cdots, n \right)\),就有

\[f \left( \frac{1}{n} \sum_{i=1}^{n} x_{i} \right) \leqslant \frac{1}{n} \sum_{i=1}^{n} f(x_{i})
\]

Jensen 不等式证明

使用下凸函数的定义和数学归纳法证明。

  1. 当 \(n = 1\),有 \(\lambda_{1} = 1\),则 \(f(\lambda_{1}x_{1}) \leqslant \lambda_{1}f(x_{1})\),Jensen 不等式成立。

  2. 当 \(n = 2\),\(f(x)\) 为下凸函数,根据下凸函数定义,有 \(\forall \lambda \in \left(0,1 \right): f(\lambda x_{1} + \left(1-\lambda\right) x_{2}) \leqslant \lambda f(x_{1}) + \left(1-\lambda\right) f(x_{2})\)。令 \(\lambda_{1} = \lambda\),则 \(\lambda_{2} = 1 - \lambda\),得

    \(f(\lambda_{1}x_{1} + \lambda_{2}x_{2}) \leqslant \lambda_{1}f(x_{1}) + \lambda_{2}f(x_{2})\),Jensen 不等式成立。

  3. 假设当 \(n = k\),不等式成立,即

\[\begin{equation}
f \left( \sum_{i=1}^{k} \lambda_{i} x_{i} \right) \leqslant \sum_{i=1}^{k} \lambda_{i}f(x_{i})
\end{equation}
\]
  1. 当 \(n = k + 1\),由命题条件 \(\displaystyle\sum_{i=1}^{k+1} \lambda_{i} = 1\) 可得 \(\displaystyle 1-\lambda_{k+1} = \sum_{i=1}^{k}\lambda_{i}\)。\(\forall \lambda_{i} \gt 0\),所以 \(1- \lambda_{k+1} \neq 0\)
\[\begin{equation} \label{eqn:one}
\begin{aligned}
f \left( \sum_{i=1}^{k+1} \lambda_{i} x_{i} \right) &= f \left( \sum_{i=1}^{k} \lambda_{i} x_{i} + \lambda_{k+1}x_{k+1} \right) \\
&= f \left( \begin{split} \left( 1 - \lambda_{k+1} \right) \dfrac{\displaystyle\sum_{i=1}^{k} \lambda_{i} x_{i}}{1 - \lambda_{k+1}} + \lambda_{k+1}x_{k+1} \end{split} \right) \\
\end{aligned}
\end{equation}
\]

考察 \(\displaystyle\frac{\displaystyle\sum_{i=1}^{k} \lambda_{i} x_{i}}{1 - \lambda_{k+1}}\),只要其属于 \(I\),就可以直接使用下凸函数定义。\(x_{i}\) 是任意给定的,不妨设 \(x_{1} \lt x_{2} \lt \cdots x_{k} \lt x_{k+1}\)。所以有

\[\begin{equation}
\begin{aligned}
&\sum_{i=1}^{k} \lambda_{i} x_{1} \leqslant \sum_{i=1}^{k} \lambda_{i} x_{i} \leqslant \sum_{i=1}^{k} \lambda_{i} x_{k} \\
\implies & x_{1} \sum_{i=1}^{k} \lambda_{i} \leqslant \sum_{i=1}^{k} \lambda_{i} x_{i} \leqslant x_{k} \sum_{i=1}^{k} \lambda_{i} \\
\implies & x_{1} \frac{\displaystyle\sum_{i=1}^{k} \lambda_{i}}{1 - \lambda_{k+1}} \leqslant \frac{\displaystyle\sum_{i=1}^{k} \lambda_{i} x_{i}}{1 - \lambda_{k+1}} \leqslant x_{k} \frac{\displaystyle\sum_{i=1}^{k} \lambda_{i}}{1 - \lambda_{k+1}} \\
\implies & x_{1} \leqslant \frac{\displaystyle\sum_{i=1}^{k} \lambda_{i} x_{i}}{1 - \lambda_{k+1}} \leqslant x_{k}
\end{aligned}
\end{equation}
\]

由于 \(x_{1}\) 和 \(x_{k}\) 都属于 \(I\),则 \(\displaystyle \frac{\displaystyle\sum_{i=1}^{k} \lambda_{i} x_{i}}{1 - \lambda_{k+1}}\) 也属于 \(I\)。所以可以对 \(\eqref{eqn:one}\) 式使用下凸函数的定义

\[\begin{equation} \label{eqn:two}
\begin{aligned}
f \left( \sum_{i=1}^{k+1} \lambda_{i} x_{i} \right)
&= f \left( \begin{split} \left( 1 - \lambda_{k+1} \right) \frac{\displaystyle\sum_{i=1}^{k} \lambda_{i} x_{i}}{1 - \lambda_{k+1}} + \lambda_{k+1}x_{k+1} \end{split} \right) \\
&\leqslant \left( 1 - \lambda_{k+1} \right) f \left( \begin{split} \frac{\displaystyle\sum_{i=1}^{k} \lambda_{i} x_{i}}{1 - \lambda_{k+1}} \end{split} \right) + \lambda_{k+1} f \left(x_{k+1}\right) \\
&= \left( 1 - \lambda_{k+1} \right) f \left( \displaystyle\sum_{i=1}^{k} \frac{\lambda_{i} x_{i}}{1 - \lambda_{k+1}} \right) + \lambda_{k+1} f \left(x_{k+1}\right) \\
\end{aligned}
\end{equation}
\]

由于 \(\displaystyle\sum_{i=1}^{k} \frac{\lambda_{i}}{1 - \lambda_{k+1}} = 1\),符合 \(n=k\) 时 Jensen 不等式成立条件,所以有 \(\displaystyle f \left( \displaystyle\sum_{i=1}^{k} \frac{\lambda_{i} x_{i}}{1 - \lambda_{k+1}} \right) \leqslant \sum_{i=1}^{k} \frac{\lambda_{i}}{1-\lambda_{k+1}} f \left( x_{i} \right)\),代入 \(\eqref{eqn:two}\) 式可以得到 Jensen 不等式成立

\[\begin{equation}
\begin{aligned}
f \left( \sum_{i=1}^{k+1} \lambda_{i} x_{i} \right)
&\leqslant \left( 1 - \lambda_{k+1} \right) f \left( \displaystyle\sum_{i=1}^{k} \frac{\lambda_{i} x_{i}}{1 - \lambda_{k+1}} \right) + \lambda_{k+1} f \left(x_{k+1}\right) \\
&\leqslant \left( 1 - \lambda_{k+1} \right) \sum_{i=1}^{k} \frac{\lambda_{i}}{1-\lambda_{k+1}} f \left( x_{i} \right) + \lambda_{k+1} f \left(x_{k+1}\right) \\
&= \sum_{i=1}^{k} \lambda_{i} f \left( x_{i} \right) + \lambda_{k+1} f \left(x_{k+1}\right) \\
&= \sum_{i=1}^{k+1} \lambda_{i} f \left( x_{i} \right)
\end{aligned}
\end{equation}
\]
  1. 综上所述,由数学归纳法得 \(\forall n \left( n = 1, 2, \cdots, k, k+1, \cdots \right)\) 有
\[\begin{equation} \label{eqn:final}
f \left( \sum_{i=1}^{n} \lambda_{i} x_{i} \right) \leqslant \sum_{i=1}^{n} \lambda_{i}f(x_{i})
\end{equation}
\]

即 Jensen 不等式成立。

  1. 直接将 \(\displaystyle\lambda_{i} = \frac{1}{n}\) 代入 \(\eqref{eqn:final}\) 式,可得
\[f \left( \frac{1}{n} \sum_{i=1}^{n} x_{i} \right) \leqslant \frac{1}{n} \sum_{i=1}^{n} f(x_{i})
\]

Jensen 不等式证明的更多相关文章

  1. 机器学习数学|微积分梯度jensen不等式

    机器学习中的数学 觉得有用的话,欢迎一起讨论相互学习~Follow Me 原创文章,如需转载请保留出处 本博客为七月在线邹博老师机器学习数学课程学习笔记 索引 微积分,梯度和Jensen不等式 Tay ...

  2. Jensen 不等式

    若f(x)为区间I上的下凸(上凸)函数,则对于任意xi∈I和满足∑λi=1的λi>0(i=1,2,...,n),成立: \[f(\sum ^{n} _{i=1} \lambda _{i}x_{i ...

  3. 归并排序、jensen不等式、非线性、深度学习

    前言 在此记录一些不太成熟的思考,希望对各位看官有所启发. 从题目可以看出来这篇文章的主题很杂,这篇文章中我主要讨论的是深度学习为什么要"深"这个问题.先给出结论吧:"深 ...

  4. 数学分析中jensen不等式由浅入深进行教学(转)

    中国知网:数学分析中Jensen不等式由浅入深进行教学

  5. 【数学基础篇】---详解极限与微分学与Jensen 不等式

    一.前述 数学基础知识对机器学习还有深度学习的知识点理解尤为重要,本节主要讲解极限等相关知识. 二.极限 1.例子 当 x 趋于 0 的时候,sin(x) 与 tan(x) 都趋于 0. 但是哪一个趋 ...

  6. 从Jensen不等式到Minkowski不等式

    整理即证 参考资料: [1].琴生不等式及其加权形式的证明.Balbooa.https://blog.csdn.net/balbooa/article/details/79357839.2018.2 ...

  7. schwarz( 施瓦兹)不等式证明

    证明 如果: 函数 y=ax^2+2bx+c 对任意x >=0 时 y>=0; 函数图象在全部x轴上方,故二次方程判别式 b^2-4ac<=0;(即方程无实数解) 即(2b)^2&l ...

  8. 凸函数与Jensen不等式

    这个是在凸优化里面看的,在EM算法中看有用到,所以用latex写了篇回忆用的小短文,现在不会把latex产生的pdf怎么转变成放到这里的内容. 所以我选择直接贴图. 这个pdf可以在我的资源里找到.  ...

  9. MT【23】用算术几何不等式证明数列极限存在

    评:如果不需要精确到3,上界的求法可以利用$$(1+\frac{1}{n})^n*\frac{1}{2}*\frac{1}{2}<(\frac{n+\frac{1}{n}*n+\frac{1}{ ...

  10. Jensen不等式

随机推荐

  1. Cocos2d-js 游戏切后台和返回游戏,系统监听事件

    在日常游戏开发中,我们会发现,实时类操作的游戏,在模拟器中切后台,然后切回游戏,会出现很多异常. 很幸运,Cocos官方已经为我们预留了接口 1 LogicGame.addSystemListener ...

  2. Linux配置成代理服务器

    简介: 代理服务器(Proxy Server)是一种位于计算机网络中的中间服务器,它充当了客户端和目标服务器之间的中介,用于转发客户端请求并获取目标服务器的响应.代理服务器的主要功能包括以下几点: 什 ...

  3. 一文讲透消息队列RocketMQ实现消费幂等

    这篇文章,我们聊聊消息队列中非常重要的最佳实践之一:消费幂等. 1 基础概念 消费幂等是指:当出现 RocketMQ 消费者对某条消息重复消费的情况时,重复消费的结果与消费一次的结果是相同的,并且多次 ...

  4. flask中使用pyjwt

    **pyjwt使用教程: ** https://pyjwt.readthedocs.io/en/stable/ 使用案例 import datetime from flask import Flask ...

  5. NTP时间服务器优先级介绍

    先思考一个问题:当一个客户端配置向多个NTP时间服务器校时,此时客户端优先向哪个时间服务器同步时间呢? 一个完整的NTP校时请求分四步: 1.客户端向服务器发起校时请求 2.服务器收到客户端发送的校时 ...

  6. vivo 海量微服务架构最新实践

    作者:来自 vivo 互联网中间件团队 本文根据罗亮老师在"2023 vivo开发者大会"现场演讲内容整理而成.公众号回复[2023 VDC]获取互联网技术分会场议题相关资料. v ...

  7. 3种依赖管理工具实现requirements.txt文件生成

    1.pip 实现方式   要使用 pip 生成 requirements.txt 文件,可以使用以下命令: pip freeze > requirements.txt   这个命令会将当前环境中 ...

  8. 掌数科技携手华为云GaussDB,助力金融科技创新,联合打造行业标杆

    本文分享自华为云社区<掌数科技携手华为云GaussDB,助力金融科技创新,联合打造行业标杆>,作者:GaussDB 数据库 . 近日,在华为开发者大会2023(Cloud)的"G ...

  9. 号外!5G+X联创营华为云官网上线,5G 创业春天来了!

    摘要:为助力互联网行业客户与伙伴实现降本增效.抓住新趋势,华为云发起"5G+X"联创营计划. 会议室里,产品经理和程序员们唇枪舌战,陷入激烈得讨(zheng)论(chao). 产品 ...

  10. 9个GaussDB常用的对象语句

    摘要:本文介绍了9个GaussDB常用的对象语句,希望对大家有帮助. 本文分享自华为云社区<GaussDB对象相关语句>,作者:酷哥. 1. 常用函数 pg_database_size() ...