也许更好的阅读体验

\(\mathcal{Description}\)

给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通。

你想在这张图上进行若干次旅游,每次旅游可以任选一个点 \(x\) 作为起点,再走到一个与 \(x\) 直接有边相连的点 \(y\),再走到一个与 \(y\) 直接有边相连的点 \(z\) 并结束本次旅游。

作为一个旅游爱好者,你不希望经过任意一条边超过一次,注意一条边不能即正向走一次又反向走一次,注意点可以经过多次,在满足此条件下,你希望进行尽可能多次的旅游,请计算出最多能进行的旅游次数并输出任意一种方案。

\(\mathcal{Solution}\)

20分思路

先提供一个比较傻且只能得20分的思路

就是我们把每条边看做是一个点,距离为一的点之间连一条边

于是问题就变成了求最大匹配了

不过这样会把边的条数大大增大.....

妥妥的TLE

100分思路

若仅是一棵树,那此题的做法还是很显然的

要保证边用的最多,按照树的深度从小到大考虑,即按照拓扑序将能匹配的匹配就是正确的

若不仅是一棵树,我们随便按照一种方式把它的生成树建出来

这样就有非树边和树边,对于每个点,我们先将其与父亲的边不考虑

设其周围有\(n\)条边

若\(n\)为偶数,就可以把它们两两搭配,有\(\frac{n}{2}\)种方法

若\(n\)为奇数,就拿一条边与其与父亲的边搭配,剩下的两两搭配

显然,这样做除了在根节点剩下一条边,其他的边都会被用到

\(\mathcal{Code}\)

实现部分说一下吧

我觉得我打得比其它人的简洁一些吧

大部分人用了一个\(vector\)去记录哪些边

实际上,我们可以直接把这些边匹配

用\(f[x]\)表示是否有一条与\(x\)相连且还没有匹配的边

每次拿到新边看看有没有为匹配的边,有的话它们就匹配

注意一条边只需考虑一次

/*******************************
Author:Morning_Glory
LANG:C++
Created Time:2019年08月30日 星期五 09时08分56秒
*******************************/
#include <cstdio>
#include <fstream>
#include <cstring>
using namespace std;
const int maxn = 1000006;
//{{{cin
struct IO{
template<typename T>
IO & operator>>(T&res){
res=0;
bool flag=false;
char ch;
while((ch=getchar())>'9'||ch<'0') flag|=ch=='-';
while(ch>='0'&&ch<='9') res=(res<<1)+(res<<3)+(ch^'0'),ch=getchar();
if (flag) res=~res+1;
return *this;
}
}cin;
//}}}
int n,m,u,v,cnt,ans;
int head[maxn],nxt[maxn],to[maxn];//edge
int a[maxn],b[maxn],c[maxn],f[maxn];//ans
bool vis[maxn];
//{{{add
void add (int u,int v)
{
nxt[cnt]=head[u],head[u]=cnt,to[cnt++]=v;
}
//}}}
//{{{dfs
void dfs (int x)
{
vis[x]=true;
for (int e=head[x];~e;e=nxt[e]){
int te=to[e];
to[e]=to[e^1]=0;
if (te){
if (!vis[te]) dfs(te);
if (f[te]) a[++ans]=x,b[ans]=te,c[ans]=f[te],f[te]=0;
else if (f[x]) a[++ans]=f[x],b[ans]=x,c[ans]=te,f[x]=0;
else f[x]=te;
}
}
}
//}}}
int main()
{
memset(head,-1,sizeof(head));
cin>>n>>m;
for (int i=1;i<=m;++i) cin>>u>>v,add(u,v),add(v,u);
vis[0]=true;
for (int i=1;i<=n;++i)
if (!vis[i]) dfs(i);
printf("%d\n",ans);
for (int i=1;i<=ans;++i) printf("%d %d %d\n",a[i],b[i],c[i]);
return 0;
}

如有哪里讲得不是很明白或是有错误,欢迎指正

如您喜欢的话不妨点个赞收藏一下吧

CF858F Wizard's Tour的更多相关文章

  1. CF858F Wizard's Tour 解题报告

    题目描述 给定一张 \(n\) 个点 \(m\) 条边的无向图,每条边连接两个顶点,保证无重边自环,不保证连通. 你想在这张图上进行若干次旅游,每次旅游可以任选一个点 \(x\) 作为起点,再走到一个 ...

  2. 【Codeforces858F】Wizard's Tour [构造]

    Wizard's Tour Time Limit: 50 Sec  Memory Limit: 512 MB Description Input Output Sample Input 4 5 1 2 ...

  3. Wizard's Tour

    F. Wizard's Tour time limit per test 2 seconds memory limit per test 256 megabytes input standard in ...

  4. 「CF858F」 Wizard's Tour

    传送门 Luogu 解题思路 首先对于树的情况,我们很显然有一种贪心策略: 对于每一个节点先匹配子树,然后在还可以匹配的儿子间尽可能匹配,要是多出来一个就往上匹配. 推广到图的情况... 我们在图的生 ...

  5. CodeForces 860D Wizard's Tour

    题意 给出一张无向图,要求找出尽量多的长度为2的不同路径(边不可以重复使用,点可以重复使用) 分析 yzy:这是原题 http://www.lydsy.com/JudgeOnline/problem. ...

  6. Wizard's Tour CodeForces - 860D (图,构造)

    大意: 给定$n$节点$m$条边无向图, 不保证连通, 求选出最多邻接边, 每条边最多选一次. 上界为$\lfloor\frac{m}{2}\rfloor$, $dfs$贪心划分显然可以达到上界. # ...

  7. Codeforces Round #434 (Div. 2)

    Codeforces Round #434 (Div. 2) 刚好时间对得上,就去打了一场cf,发现自己的代码正确度有待提高. A. k-rounding 题目描述:给定两个整数\(n, k\),求一 ...

  8. salesforce 零基础学习(六十)Wizard样式创建数据

    项目中表之间关联关系特别多,比如三个表中A,B,C  C作为主表,A,B作为从表,有时候C表需要创建数据时,同时需要创建A,B两个表的数据,这种情况下,使用Wizard样式会更加友好. 以Goods_ ...

  9. Wizard Framework:一个自己开发的基于Windows Forms的向导开发框架

    最近因项目需要,我自己设计开发了一个基于Windows Forms的向导开发框架,目前我已经将其开源,并发布了一个NuGet安装包.比较囧的一件事是,当我发布了NuGet安装包以后,发现原来已经有一个 ...

随机推荐

  1. Java-Maven(九):Maven 项目pom文件引入工程根目录下lib文件夹下的jar包

    由于项目一些特殊需求,pom依赖的包可能是非Maven Repository下的包文件,因此无法自己从网上下载.此时,我们团队git上对该jar使用. Maven项目pom引入lib下jar包 在ec ...

  2. Asp.Net Core 2.2 - HTTP Error 500.0 - ANCM In-Process Handler Load Failure

    检查发布文件下是否存在runtime这个文件夹,如图

  3. 123457123456#1#----com.MC.EnglishGame98--前拼后广--jp英语-mc

    com.MC.EnglishGame98--前拼后广--jp英语-mc

  4. 报错:Configured broker.id 68 doesn't match stored broker.id 113 in meta.properties

    报错背景: CDH中安装完成kafka的组件后不能成功启动,发现UI界面中的broker.id和服务器中的broker.id不一致, 因此更改了服务器中broker.id 但是更改完成之后还是报错. ...

  5. intellij 插件的使用

    目录 intellij 插件的使用 插件的设置 插件推荐 @(目录) intellij 插件的使用 插件的设置 在 IntelliJ IDEA 的安装讲解中我们其实已经知道,IntelliJ IDEA ...

  6. [ kvm ] 学习笔记 1:Linux 操作系统及虚拟化

    1. 前言 一台计算机是由一堆硬件设备组合而成,在硬件之上是操作系统,操作系统与计算机硬件密不可分,操作系统用来管理所有的硬件资源提供服务,各个硬件设备是通过 总线 进行连接起来的: 在操作系统之上, ...

  7. Java学习,从入门到放弃(二)Linux配置mvn

    其实网上的教程很多,随便拿一个,比如:https://www.cnblogs.com/chuijingjing/p/10430649.html 但在实践过程中,发现可能需要将JAVA_HOME也加到 ...

  8. 服务发现--初识Consul

    前言 服务注册.服务发现作为构建微服务架构得基础设施环节,重要性不言而喻.在当下,比较热门用于做服务注册和发现的开源项目包括zookeeper.etcd.euerka和consul.今天在这里对近期学 ...

  9. Linux杀毒软件(ClamAV)

    Clam AntiVirus是一个类UNIX系统上使用的反病毒软件包.主要应用于邮件服务器,采用多线程后台操作,可以自动升级病毒库. 一.下载安装 1.下载 clamav官网:http://www.c ...

  10. Swoole练习 UDP

    UDP 服务代码 <?php //创建Server对象,监听 127.0.0.1:9502端口,类型为SWOOLE_SOCK_UDP $serv = new swoole_server(&quo ...