一起来学演化计算-matlab优化函数fminunc

觉得有用的话,欢迎一起讨论相互学习~Follow Me

fminunc

  • 求无约束多变量函数的最小值
  • 非线性编程求解器
  • 找到指定问题的最小值,\(min_{x}f(x)\) ,其中f(x)是一个返回一个标量的函数,x是一个向量或者矩阵。

语法

  • x = fminunc(fun,x0)
  • x = fminunc(fun,x0,options)
  • x = fminunc(problem)
  • [x,fval] = fminunc( ___ )
  • [x,fval,exitflag,output] = fminunc( __ )
  • [x,fval,exitflag,output,grad,hessian] = fminunc( ___ )

表示和描述

  • x = fminunc(fun,x0)从x0点开始,尝试找到fun中描述的函数的一个局部最小x。点x0可以是标量、向量或矩阵。

  • Note fminunc适用于无约束的非线性问题。如果您的问题有约束,通常使用fmincon。参见优化决策表。

  • x = fminunc(fun,x0,options)通过选项中指定的优化选项最小化乐趣。使用 optimoptions 设置这些选项。

  • x = fminunc(problem)找到问题的最小值,其中问题是 Input Arguments 中描述的结构。

  • [x,fval] = fminunc( __ ),对于任何语法,返回目标函数在解x处的值

  • [x,fval,exitflag,output] = fminunc()另外返回一个描述fminunc退出条件的exitflag值,以及一个包含优化过程信息的结构输出

  • [x,fval,exitflag,output,grad,hessian] = fminunc( __ )另外返回:

    • 梯度-解x处的梯度。
    • Hessian- 解决方案x的x1和x2的偏导。
    • \[Hessian=H _ { i j } = \frac { \partial ^ { 2 } f } { \partial x _ { i } \partial x _ { j } }
      \]

示例

最小化一个多项式

求函数梯度

使用问题结构

  • 此和上一节的内容相同,但是使用了问题结构的模型,即为problem设置options,x0,objective,solver然后使用fminunc函数优化问题。
problem.options = options;
problem.x0 = [-1,2];
problem.objective = @rosenbrockwithgrad;
problem.solver = 'fminunc';

获取最佳的目标函数值

  • 没看出和第一个例子有什么区别,但是我感觉第一个函数是能够计算得到梯度的,而这个函数则不能够直接计算出梯度信息

检查解决方案过程

  • 可以输出优化过程和各种参数

输入参数

Fun 需要被优化的函数

X0 初始点

选项

所有算法

  • 寻优算法
  • 如果函数能够提供梯度则选择"trust-region"选项,否则选择 拟牛顿法 -"quasi-newton"

  • 梯度检查

  • 显示

  • 有限差分类型和步长

  • 函数终止

  • 迭代调用其他函数

  • 画出结果

  • 自定义梯度函数

  • TypicalX

trust-region算法

quasi-Newton

Problem

输出参数

matlab优化函数fminunc的更多相关文章

  1. Matlab基础

    基本运算: 一,矩阵的生成 clc ; clear all; close all; 1.直接输入 A = [ 1 ,2 ,3,4;2,3,4,5;3,4,5,6] A = 1 2 3 4 2 3 4 ...

  2. 机器学习作业(二)逻辑回归——Python(numpy)实现

    题目太长啦!文档下载[传送门] 第1题 简述:实现逻辑回归. 此处使用了minimize函数代替Matlab的fminunc函数,参考了该博客[传送门]. import numpy as np imp ...

  3. 计算智能(CI)之粒子群优化算法(PSO)(一)

    欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 计算智能(Computational Intelligence , ...

  4. matlab(4) Logistic regression:求θ的值使用fminunc / 画decision boundary(直线)plotDecisionBoundary

    画decision boundary(直线) %% ============= Part 3: Optimizing using fminunc =============% In this exer ...

  5. MATLAB命令大全

    一.常用对象操作:除了一般windows窗口的常用功能键外.1.!dir 可以查看当前工作目录的文件. !dir& 可以在dos状态下查看.2.who 可以查看当前工作空间变量名, whos ...

  6. 在数学建模中学MATLAB

    为期三周的数学建模国赛培训昨天正式结束了,还是有一定的收获的,尤其是在MATLAB的使用上. 1. 一些MATLAB的基础性东西: 元胞数组的使用:http://blog.csdn.net/z1137 ...

  7. Matlab实现线性回归和逻辑回归: Linear Regression & Logistic Regression

    原文:http://blog.csdn.net/abcjennifer/article/details/7732417 本文为Maching Learning 栏目补充内容,为上几章中所提到单参数线性 ...

  8. [转] MATLAB快捷键

    原文地址:MATLAB快捷键大全 (转载)作者:掷地有声 一.索引混排版 备注:删除了如F1(帮助)等类型的常见快捷命令 SHIFT+DELETE永久删除 DELETE删除 ALT+ENTER属性 A ...

  9. MATLAB中如何使用遗传算法

    matlab有遗传算法工具箱. 核心函数:   (1)function [pop]=initializega(num,bounds,eevalFN,eevalOps,options)--初始种群的生成 ...

随机推荐

  1. UWB DWM1000 开源项目框架 之 温度采集

    在之前博文开源一套uwb 框架,后面几篇博文会基于这个开源框架进行简单开发. 让uwb使用者更清楚了解基于这个basecode 开发工作. 这里所做内容是,采集dwm1000 温度,并发送到另一个节点 ...

  2. TPCH 22条SQL语句分析

    使用TPC-H进行性能测试,需要有很多工作配合才能获得较高性能,如建立索引,表数据的合理分布(使用表空间和聚簇技术)等.本文从查询优化技术的角度,对TPC-H的22条查询语句和主流数据库执行每条语句对 ...

  3. Kubernetes 学习9 Pod控制器

    一.Deployment 定义 1.简介 [root@k8smaster manifests]# kubectl explain deploy(也可以写作deployment) KIND: Deplo ...

  4. 【洛谷P4245】 【模板】任意模数NTT

    三模数 NTT,感觉不是很难写 $?$ 代码借鉴的 https://www.cnblogs.com/Mychael/p/9297652.html code: #include <bits/std ...

  5. 力扣50题 Pow(x,n)

    本题是力扣网第50题. 实现 pow(x, n) ,即计算 x 的 n 次幂函数. 采用递归和非递归思路python实现. class Solution: #递归思路 def myPow_recurs ...

  6. makefile通用版本(一)

    实际当中程序文件比较大,这时候对文件进行分类,分为头文件.源文件.目标文件.可执行文件.也就是说通常将文件按照文件类型放在不同的目录当中,这个时候的Makefile需要统一管理这些文件,将生产的目标文 ...

  7. python 装饰器demo

    本质就是一个函数,这个函数符合闭包语法结构,可以在函数不需要改变任何代码情况下增加额外功装饰器的返回值是一个函数的引用 功能:1.引入日志:2.函数执行时间统计:3.执行函数前预备处理:4.执行函数后 ...

  8. andriod studio命名规范

    标识符命名法标识符命名法最要有四种: 1 驼峰(Camel)命名法:又称小驼峰命名法,除首单词外,其余所有单词的第一个字母大写. 2 帕斯卡(pascal)命名法:又称大驼峰命名法,所有单词的第一个字 ...

  9. Tkinter 之记事本项目实战

    一.效果图 二.文件 链接:https://pan.baidu.com/s/1CUkfWpfH8t2GSJyy5hYv-A 提取码:5yvn 后续可能做一些功能扩展,有需要源码的可以评论联系我!!!

  10. 依赖倒置原则(DIP)

    1. 定义 (1)高层模块不应依赖于低层模块,两者都应该依赖于抽象.(2)抽象不应该依赖于细节,细节应该依赖于抽象. 为什么是“倒置”这个词? 这是由于许多传统的软件开发方法,比如结构化分析和设计,总 ...