题目描述

求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数。

输入输出格式

输入格式:

r

输出格式:

整点个数

输入输出样例

输入样例#1: 复制

4
输出样例#1: 复制

4

说明

n<=2000 000 000

/*
处理筛法:
筛素数筛到r<=2e9的话显然数组开不下
显然一个数有<=1个大于它的sqrt的素因子
所以我们筛小于等于sqrt(r)的范围内的素数
然后用筛出来的素数将n质因数分解后可能r!=1
这个时候的n就是n的那个大于sqrt(r)的素因子 处理计算:
如果prime[i]%4==3的话,prime[i]就是个素数,同时也是个高斯素数,对答案无影响
如果prime[i]%4==1,就记录prime[i]的指数tmp,让ans*=(tmp*2+1)
至于为什么这么做,自己看视频去。
https://www.bilibili.com/video/av12131743/
*/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; const int N=4e4+; bool flag[N];
int prime[N],cnt;
inline void init()
{
for(int i=;i<N;++i)
{
if(!flag[i])
prime[++cnt]=i;
for(int j=,k;j<=cnt&&(k=prime[j]*i)<N;++j)
{
flag[k]=;
if(i%prime[j]==)
break;
}
}
} int n;
int main()
{
init();
scanf("%d",&n);
while((n&)^)
n>>=;
int ans=;
for(int i=,tmp=;i<=cnt&&n!=;++i)
{
if(n%prime[i])
continue;
tmp=;
while(n%prime[i]==)
++tmp,n/=prime[i];
if(prime[i]%==)
ans*=(tmp<<|);
}
if(n>&&n%==)
ans*=;
cout<<(ans<<);
return ;
}
/*
处理筛法:
筛素数筛到r<=2e9的话显然数组开不下
显然一个数有<=1个大于它的sqrt的素因子
所以我们筛小于等于sqrt(r)的范围内的素数
然后用筛出来的素数将n质因数分解后可能r!=1
这个时候的n就是n的那个大于sqrt(r)的素因子 处理计算:
如果prime[i]%4==3的话,prime[i]就是个素数,同时也是个高斯素数,对答案无影响
如果prime[i]%4==1,就记录prime[i]的指数tmp,让ans*=(tmp*2+1)
至于为什么这么做,自己看视频去。
https://www.bilibili.com/video/av12131743/
*/ #include<iostream>
#include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; const int N=4e4+; bool flag[N];
int prime[N],cnt;
inline void init()
{
for(int i=;i<N;++i)
{
if(!flag[i])
prime[++cnt]=i;
for(int j=,k;j<=cnt&&(k=prime[j]*i)<N;++j)
{
flag[k]=;
if(i%prime[j]==)
break;
}
}
} int n;
int main()
{
init();
scanf("%d",&n);
while((n&)^)
n>>=;
int ans=;
for(int i=,tmp=;i<=cnt&&n!=;++i)
{
if(n%prime[i])
continue;
tmp=;
while(n%prime[i]==)
++tmp,n/=prime[i];
if(prime[i]%==)
ans*=(tmp<<|);
}
if(n>&&n%==)
ans*=;
cout<<(ans<<);
return ;
}

P2508 [HAOI2008]圆上的整点的更多相关文章

  1. 2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ π )

    2021.12.06 P2508 [HAOI2008]圆上的整点(数论+ \(\pi\) ) https://www.luogu.com.cn/problem/P2508 题意: 求一个给定的圆 \( ...

  2. 洛谷P2508 [HAOI2008]圆上的整点

    题目描述 求一个给定的圆$ (x^2+y^2=r^2) $,在圆周上有多少个点的坐标是整数. 输入格式 \(r\) 输出格式 整点个数 输入输出样例 输入 4 输出 4 说明/提示 \(n\le 20 ...

  3. [bzoj1041] [洛谷P2508] [HAOI2008] 圆上的整点

    Description 求一个给定的圆(x^2+y^2=r^2),在圆周上有多少个点的坐标是整数. Input 只有一个正整数n,n<=2000 000 000 Output 整点个数 Samp ...

  4. luogu P2508 [HAOI2008]圆上的整点

    传送门 推荐去bzoj看个视频了解一下 不要妄想视频直接告诉你题解 但是视频告诉了你后面要用的东西 首先我们要求的是\(x^2+y^2=n^2(x,y\in Z)\)的\((x,y)\)对数,可以转化 ...

  5. BZOJ 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 3621  Solved: 1605[Submit][Sta ...

  6. bzoj 1041: [HAOI2008]圆上的整点 数学

    1041: [HAOI2008]圆上的整点 Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://www.lydsy.com/JudgeOnline/ ...

  7. bzoj 1041: [HAOI2008]圆上的整点 本原勾股數組

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 2027  Solved: 853[Submit][Stat ...

  8. 1041: [HAOI2008]圆上的整点

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4298  Solved: 1944[Submit][Sta ...

  9. BZOJ 1041: [HAOI2008]圆上的整点【数论,解方程】

    1041: [HAOI2008]圆上的整点 Time Limit: 10 Sec  Memory Limit: 162 MBSubmit: 4210  Solved: 1908[Submit][Sta ...

随机推荐

  1. Java代码质量检查checkstyle, pmd, cpd, p3c,findbugs, jacoco, sonarquebe以及和Jenkins集成

    概述 又搞一边质量扫描插件,之前做过一遍,然后后面各种忽略,然后就放弃了,所以,应该寻找一种方法,循序渐进的实施.本次将实施一个基本的打包扫描方案,包含 checkstyle 固定团队编码风格,固定命 ...

  2. 函数防抖节流的理解及在Vue中的应用

    防抖和节流的目的都是为了减少不必要的计算,不浪费资源,只在适合的时候再进行触发计算. 一.函数防抖 定义 在事件被触发n秒后再执行回调,如果在这n秒内又被触发,则重新计时:典型的案例就是输入搜索:输入 ...

  3. Web应急:门罗币恶意挖矿

    门罗币(Monero 或 XMR),它是一个非常注重于隐私.匿名性和不可跟踪的加密数字货币.只需在网页中配置好js脚本,打开网页就可以挖矿,是一种非常简单的挖矿方式,而通过这种恶意挖矿获取数字货币是黑 ...

  4. Java 8——接口中个的默认方法和静态方法

    在Java SE 8之前,interface只是事物的抽象,用来定义统一的抽象事物和描述事物的抽象行为和属性. 但是在Java SE 8中,增加了可以在interface中增加默认实现的行为和事物的静 ...

  5. react的标记渲染机制

    // ReactUpdates.js  - enqueueUpdate(component) function dirtyComponents.push(component); https://jue ...

  6. css3贝塞尔曲线过渡动画速率——transition-timing-function:cubic-bezier(n,n,n,n)

    css3过渡动画速率用到的是三阶贝塞尔曲线,曲线有四个点,p0,p1,p2,p3 有几个属性: linear 规定以相同速度开始至结束的过渡效果(等于 cubic-bezier(0,0,1,1)). ...

  7. asp.net web 项目 针对aspx和ashx的 IHttpHandlerFactory 开发

    ASP.NET Framework处理一个Http Request的流程: HttpRequest-->inetinfo.exe-->ASPNET_ISAPI.dll-->ASPNE ...

  8. vb Replace 实现

    今天改一个VB程序时发现程序自带的replace 函数不知什么原因竟然不好用了 所以就自己写了一个玩玩 记录一下 'XGZ '替换字符 Private Function Replace1(ByVal ...

  9. Spring扩展点之BeanPostProcessor

    前言 BeanPostProcessor接口是Spring中一个非常重要的接口,它的接口定义如下 public interface BeanPostProcessor { Object postPro ...

  10. JavaScript的Proxy可以做哪些有意思的事儿

    摘要: 神奇而有趣的Proxy. 原文:拿Proxy可以做哪些有意思的事儿 作者:贾顺名 Fundebug经授权转载,版权归原作者所有. Proxy是什么 首先,我们要清楚,Proxy是什么意思,这个 ...