一、理论

二、数据集

6.1101,17.592
5.5277,9.1302
8.5186,13.662
7.0032,11.854
5.8598,6.8233
8.3829,11.886
7.4764,4.3483
8.5781,
6.4862,6.5987
5.0546,3.8166
5.7107,3.2522
14.164,15.505
5.734,3.1551
8.4084,7.2258
5.6407,0.71618
5.3794,3.5129
6.3654,5.3048
5.1301,0.56077
6.4296,3.6518
7.0708,5.3893
6.1891,3.1386
20.27,21.767
5.4901,4.263
6.3261,5.1875
5.5649,3.0825
18.945,22.638
12.828,13.501
10.957,7.0467
13.176,14.692
22.203,24.147
5.2524,-1.22
6.5894,5.9966
9.2482,12.134
5.8918,1.8495
8.2111,6.5426
7.9334,4.5623
8.0959,4.1164
5.6063,3.3928
12.836,10.117
6.3534,5.4974
5.4069,0.55657
6.8825,3.9115
11.708,5.3854
5.7737,2.4406
7.8247,6.7318
7.0931,1.0463
5.0702,5.1337
5.8014,1.844
11.7,8.0043
5.5416,1.0179
7.5402,6.7504
5.3077,1.8396
7.4239,4.2885
7.6031,4.9981
6.3328,1.4233
6.3589,-1.4211
6.2742,2.4756
5.6397,4.6042
9.3102,3.9624
9.4536,5.4141
8.8254,5.1694
5.1793,-0.74279
21.279,17.929
14.908,12.054
18.959,17.054
7.2182,4.8852
8.2951,5.7442
10.236,7.7754
5.4994,1.0173
20.341,20.992
10.136,6.6799
7.3345,4.0259
6.0062,1.2784
7.2259,3.3411
5.0269,-2.6807
6.5479,0.29678
7.5386,3.8845
5.0365,5.7014
10.274,6.7526
5.1077,2.0576
5.7292,0.47953
5.1884,0.20421
6.3557,0.67861
9.7687,7.5435
6.5159,5.3436
8.5172,4.2415
9.1802,6.7981
6.002,0.92695
5.5204,0.152
5.0594,2.8214
5.7077,1.8451
7.6366,4.2959
5.8707,7.2029
5.3054,1.9869
8.2934,0.14454
13.394,9.0551
5.4369,0.61705

三、代码实现

clear  all;
clc;
data = load('ex1data1.txt');
X = data(:, 1); y = data(:, 2);
m = length(y); % number of training examples
plot(X,y,'rx'); %% =================== Part 3: Gradient descent ===================
fprintf('Running Gradient Descent ...\n') %为什么加上一列1,为了算J时候,theta0 乘以1
X = [ones(m, 1), data(:,1)]; % Add a column of ones to x
theta = zeros(2, 1); % initialize fitting parameters % Some gradient descent settings
iterations = 1500;
alpha = 0.01; % compute and display initial cost
computeCost(X, y, theta) % run gradient descent
[theta, J_history]= gradientDescent(X, y, theta, alpha, iterations); hold on; % keep previous plot visible
plot(X(:,2), X*theta, '-')
legend('Training data', 'Linear regression')
hold off % don't overlay any more plots on this figure % Predict values for population sizes of 35,000 and 70,000
predict1 = [1, 3.5] *theta;
fprintf('For population = 35,000, we predict a profit of %f\n',...
predict1*10000);
predict2 = [1, 7] * theta;
fprintf('For population = 70,000, we predict a profit of %f\n',...
predict2*10000); % Grid over which we will calculate J
theta0_vals = linspace(-10, 10, 100);
theta1_vals = linspace(-1, 4, 100); % initialize J_vals to a matrix of 0's
J_vals = zeros(length(theta0_vals), length(theta1_vals)); % Fill out J_vals
for i = 1:length(theta0_vals)
for j = 1:length(theta1_vals)
t = [theta0_vals(i); theta1_vals(j)];
J_vals(i,j) = computeCost(X, y, t);
end
end % Because of the way meshgrids work in the surf command, we need to
% transpose J_vals before calling surf, or else the axes will be flipped
J_vals = J_vals';
% Surface plot
figure;
surf(theta0_vals, theta1_vals, J_vals)
xlabel('\theta_0'); ylabel('\theta_1'); % Contour plot
figure;
% Plot J_vals as 15 contours spaced logarithmically between 0.01 and 100
%以10为底的指数 logspace(-2, 3, 20)坐标值标注范围以及间距
contour(theta0_vals, theta1_vals, J_vals, logspace(-2, 3, 20))
xlabel('\theta_0'); ylabel('\theta_1');
hold on;
plot(theta(1), theta(2), 'rx', 'MarkerSize', 10, 'LineWidth', 2);

  ...................

function J = computeCost(X, y, theta)

m = length(y); % number of training examples
J = 0; for i=1:m
J = J +(theta(1)*X(i,1) + theta(2)*X(i,2) - y(i))^2;
end
% 除以2m是为了在更新参数的时候 好算 2因为J是二次,求骗到后产生系数2,
%m是为了不让J 过大(i=1:m已经是求偏导第二部的m、项了)
J = J/(m*2);
end

  ......

function [theta, J_history] = gradientDescent(X, y, theta, alpha, num_iters)

m = length(y); % number of training examples
J_history = zeros(num_iters, 1);
J_1 = 0;% 偏导数J_1, J_2
J_2 = 0;
for iter = 1:num_iters
for i = 1:m
J_1 = J_1 + theta(1)*X(i,1) + theta(2)*X(i,2) - y(i);
J_2 = J_2 + (theta(1)*X(i,1) + theta(2)*X(i,2) - y(i)) * X(i,2);
end
%J中的m 没有在上面的for内除,因为只除以一次就够了
J_1 = J_1/m;
J_2 = J_2/m;
% temp1 = theta(1) - alpha * J_1;
% temp2 = theta(2) - alpha * J_2;
% theta(1) = temp1;
% theta(2) = temp2;
theta(1) = theta(1) - alpha * J_1;
theta(2) = theta(2) - alpha * J_2;
J_history(iter) = computeCost(X, y, theta);
% save J_history J_history
end
end

四、运行结果

Matlab实现单变量线性回归的更多相关文章

  1. 机器学习之单变量线性回归(Linear Regression with One Variable)

    1. 模型表达(Model Representation) 我们的第一个学习算法是线性回归算法,让我们通过一个例子来开始.这个例子用来预测住房价格,我们使用一个数据集,该数据集包含俄勒冈州波特兰市的住 ...

  2. Coursera《machine learning》--(2)单变量线性回归(Linear Regression with One Variable)

    本笔记为Coursera在线课程<Machine Learning>中的单变量线性回归章节的笔记. 2.1 模型表示 参考视频: 2 - 1 - Model Representation ...

  3. 机器学习(二)--------单变量线性回归(Linear Regression with One Variable)

    面积与房价 训练集 (Training Set) Size       Price 2104       460 852         178 ...... m代表训练集中实例的数量x代表输入变量 ...

  4. Ng第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 2.4  梯度下降 2.5  梯度下 ...

  5. python 单变量线性回归

      单变量线性回归(Linear Regression with One Variable)¶ In [54]: #初始化工作 import random import numpy as np imp ...

  6. 斯坦福第二课:单变量线性回归(Linear Regression with One Variable)

    二.单变量线性回归(Linear Regression with One Variable) 2.1  模型表示 2.2  代价函数 2.3  代价函数的直观理解 I 2.4  代价函数的直观理解 I ...

  7. 【原】Coursera—Andrew Ng机器学习—课程笔记 Lecture 2_Linear regression with one variable 单变量线性回归

    Lecture2   Linear regression with one variable  单变量线性回归 2.1 模型表示 Model Representation 2.1.1  线性回归 Li ...

  8. 机器学习 (一) 单变量线性回归 Linear Regression with One Variable

    文章内容均来自斯坦福大学的Andrew Ng教授讲解的Machine Learning课程,本文是针对该课程的个人学习笔记,如有疏漏,请以原课程所讲述内容为准.感谢博主Rachel Zhang的个人笔 ...

  9. 【Python】机器学习之单变量线性回归 利用正规方程找到合适的参数值

    [Python]机器学习之单变量线性回归 利用正规方程找到合适的参数值 本次作业来自吴恩达机器学习. 你是一个餐厅的老板,你想在其他城市开分店,所以你得到了一些数据(数据在本文最下方),数据中包括不同 ...

随机推荐

  1. CentOS用户权限管理--su与sudo

    Linux权限管理--su与sudo 1.su用来切换登录的用户,比如当前用户为chen,可以用su zhu,并输入用户zhu的登录密码,就可以切换到用户zhu.如果一个普通用户想切换到root用户, ...

  2. MongoDB 创建数据库

    语法 MongoDB 创建数据库的语法格式如下: use DATABASE_NAME 如果数据库不存在,则创建数据库,否则切换到指定数据库. 实例 以下实例我们创建了数据库 runoob: > ...

  3. 重拾C,一天一点点_9-指针与数组

    这一章节很重要,一定要多思考.理解! 指针是一种保存变量地址的变量. 通常的机器 都有一系列连续编号或编址的存储单元.一个字节可存char类型,两相邻字节存储单元可存一个short,依此类推. p = ...

  4. C++求斐波那契数

    题目内容:斐波那契数定义为:f(0)=0,f(1)=1,f(n)=f(n-1)+f(n-2)(n>1且n为整数) 如果写出菲氏数列,则应该是: 0 1 1 2 3 5 8 13 21 34 …… ...

  5. C# 截取带路径的文件名字,扩展名,等等 的几种方法

    C#对磁盘IO操作的时候,经常会用到这些,路径,文件,文件名字,文件扩展名. 之前,经常用切割字符串来实现, 可是经常会弄错. 尤其是启始位置,多少个字节,经常弄晕. 下面这种方法貌似比较简便: st ...

  6. python & pandas链接mysql数据库

    Python&pandas与mysql连接 1.python 与mysql 连接及操作,直接上代码,简单直接高效: import MySQLdb try: conn = MySQLdb.con ...

  7. 程序员定制的中州韵(rime)windows版(小狼毫)微软双拼输入法

    小狼毫所有的配置都是在用户文件夹下完成的 用户文件夹在win7的开始菜单的小狼毫文件夹中可以找到 所有设置希望生效须用小狼毫开始菜单中的重新部署来更新配置 -> weasel.custom.ya ...

  8. java-testng-selenium优化

    由于项目中webui测试的需要,是用testng+selenium的方式,其中遇到过几个问题,记录下,方便以后查看 1.重复运行多次case 因为是selenium,所以有的时候需要运行多次,方法是写 ...

  9. openSUSE13.1 Yast 中所有软件图形化界面无法打开,问题原因: Ruby

    因为使用rvm安装了新的Ruby,而openSUSE13.1的YaST又是用Ruby的.....解决方案暂时没有

  10. C 构造一个 简单配置文件读取库

    前言 最近看到这篇文章, json引擎性能对比报告 http://www.oschina.net/news/61942/cpp-json-compare?utm_source=tuicool 感觉技术 ...