板题hdu1348Wall

平面凸包问题是计算几何中的一个经典问题

具体就是给出平面上的多个点,求一个最小的凸多边形,使得其包含所有的点

具体形象就类似平面上有若干柱子,一个人用绳子从外围将其紧紧缠绕一圈

Graham算法##

直接讲算法

我们将所有点排序,分别求出上凸壳和下凸壳,合起来就是凸包

以上凸壳为例子,我们先将最左边的点加入凸包【可以想象,最左侧的点一定在凸包上】

之后向后查找:

1、若当前凸包内只有一点,那么加入新的点

2、如果当前凸包内不止一个点,检验新加入的点与凸包最后一个点所在直线与当前凸包最后两点坐在直线的关系

如果是这样:



满足上凸性,加入凸包

但是如果是这样:



不满足上凸性,就不加入

具体判断可以用斜率也可以用叉乘【我写斜率狂WA,还是叉乘比较滋滋】

扫过一遍,就可以得到上凸壳,下凸壳类似

复杂度\(O(nlogn)\)

hdu1348

#include<iostream>
#include<cmath>
#include<cstdio>
#include<cstring>
#include<algorithm>
#define LL long long int
#define REP(i,n) for (int i = 1; i <= (n); i++)
using namespace std;
const int maxn = 2005,maxm = 100005;
const double INF = 1000000000000000000ll;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57) {if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57) {out = (out << 3) + (out << 1) + c - '0'; c = getchar();}
return out * flag;
}
const double pi = acos(-1);
struct point{double x,y;}p[maxn];
inline bool operator <(const point& a,const point& b){
return a.x == b.x ? a.y < b.y : a.x < b.x;
}
inline point operator -(const point& a,const point& b){
return (point){a.x - b.x,a.y - b.y};
}
inline double operator *(const point& a,const point& b){
return a.x * b.y - a.y * b.x;
}
inline double dis(int u,int v){
return sqrt((p[u].x - p[v].x) * (p[u].x - p[v].x) + (p[u].y - p[v].y) * (p[u].y - p[v].y));
}
int T,n,L,q[maxn],tail;
void cal(){
sort(p + 1,p + 1 + n);
q[tail = 1] = 1;
for (int i = 2; i <= n; i++){
while (tail > 1 && (p[i] - p[q[tail]]) * (p[q[tail]] - p[q[tail - 1]]) < 0) tail--;
q[++tail] = i;
}
int last = tail;
for (int i = n - 1; i; i--){
while (tail > last && (p[i] - p[q[tail]]) * (p[q[tail]] - p[q[tail - 1]]) < 0) tail--;
q[++tail] = i;
}
}
void print(){
double ans = 0;
for (int i = 1; i < tail; i++) ans += dis(q[i],q[i + 1]);
ans += 2.0 * pi * L;
if (T) printf("%.0lf\n\n",ans);
else printf("%.0lf\n",ans);
}
int main(){
T = read();
while (T--){
n = read(); L = read();
for (int i = 1; i <= n; i++) p[i].x = read(),p[i].y = read();
cal();
print();
}
return 0;
}

平面凸包Graham算法的更多相关文章

  1. Graham算法—二维点集VC++实现

    一.凸包定义 通俗的说就是:一组平面上的点,求一个包含所有点的最小凸多边形,这个最小凸多边形就是凸包. 二.Graham算法思想 概要:Graham算法的主要思想就是,最终形成的凸包,即包围所有点的凸 ...

  2. Surround the Trees---hdu1392(凸包GraHam模板)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1392 题意:有n棵树,每棵树有一个坐标,想用一些绳子把这些树包含起来,求需要绳子的长度: 就是求凸包的 ...

  3. 【计算几何初步-凸包-Graham扫描法-极角序】【HDU1348】 WALL

    Wall Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  4. C++ 凸包生成算法

    由于我的极差记忆力,我打算把这个破玩意先记下来.因为以后会有改动(Delaunay三角网生成算法),我不想把一个好的东西改坏了... 好吧-- 凸包生成算法,: 1.先在指定的宽(width)高(he ...

  5. HDU 5928 DP 凸包graham

    给出点集,和不大于L长的绳子,问能包裹住的最多点数. 考虑每个点都作为左下角的起点跑一遍极角序求凸包,求的过程中用DP记录当前以j为当前末端为结束的的最小长度,其中一维作为背包的是凸包内侧点的数量.也 ...

  6. 29 基于PCL的点云平面分割拟合算法技术路线(针对有噪声的点云数据)

    0 引言 最近项目中用到了基于PCL开发的基于平面的点云和CAD模型的配准算法,点云平面提取采用的算法如下. 1 基于PCL的点云平面分割拟合算法 2 参数及其意义介绍 (1)点云下采样 1. 参数: ...

  7. [OpenCV]基于特征匹配的实时平面目标检测算法

    一直想基于传统图像匹配方式做一个融合Demo,也算是对上个阶段学习的一个总结. 由此,便采购了一个摄像头,在此基础上做了实时检测平面目标的特征匹配算法. 代码如下: # coding: utf-8 ' ...

  8. 二维凸包 Graham扫描算法

    题目链接: http://poj.org/problem?id=1113 求下列点的凸包 求得凸包如下: Graham扫描算法: 找出最左下的点,设为一号点,将其它点对一号点连线,按照与x轴的夹角大小 ...

  9. 凸包Graham Scan算法实现

    凸包算法实现点集合中搜索凸包顶点的功能,可以处理共线情况,可以输出共线点也可以不输出而只输出凸包顶点.经典的Graham Scan算法,点排序使用极角排序方式,并对共线情况做特殊处理.一般算法是将共线 ...

随机推荐

  1. [dp uestc oj] G - 邱老师玩游戏

    G - 邱老师玩游戏 Time Limit: 3000/1000MS (Java/Others)     Memory Limit: 65535/65535KB (Java/Others) Submi ...

  2. Python中Numpy mat的使用

    前面介绍过用dnarray来模拟,但mat更符合矩阵,这里的mat与Matlab中的很相似.(mat与matrix等同) 基本操作 >>> m= np.mat([1,2,3]) #创 ...

  3. Python中Numpy ndarray的使用

    本文主讲Python中Numpy数组的类型.全0全1数组的生成.随机数组.数组操作.矩阵的简单运算.矩阵的数学运算. 尽管可以用python中list嵌套来模拟矩阵,但使用Numpy库更方便. 定义数 ...

  4. python 基础之格式化输出

    字符占位符%s #_cvvh:"chenxi" #date: 2019/6/24 print ('chhjg') # 格式化输出 name = input("Name:& ...

  5. Python——函数入门(二)

    一.函数的参数 我们在定义函数时,可以定义形式参数(简称形参),这些形参的值在函数调用的时候才会确定,形参的值由调用者负责传入. 1.关键字参数 在Python中,函数的参数名并不是没有意义的,在调用 ...

  6. Bootstrap历练实例:下拉菜单插件方法的使用

    <!DOCTYPE html><html><head><meta http-equiv="Content-Type" content=&q ...

  7. 01_1_Struts环境搭建

    01_1_Struts环境搭建 1. MyEclipse配置部分 1.1创建项目 新建new—>Project—>Web Project—>Project Name(配置项目名)—& ...

  8. iOS 解决ipv6问题

    解决ipv6的方法有很多种,由于现在国内的网络运营商还在使用ipv4的网络环境,所以appstore应用不可能大范围去修改自己的服务器, 而且国内的云服务器几乎没有ipv6地址. 这里附上苹果开发平台 ...

  9. Clang提供的办法

    1.方法弃用警告 #pragma clang diagnostic push #pragma clang diagnostic ignored "-Wdeprecated-declarati ...

  10. constraint the design