【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流
题目描述
Farmer John is constructing a new milking machine and wishes to keep it secret as long as possible. He has hidden in it deep within his farm and needs to be able to get to the machine without being detected. He must make a total of T (1 <= T <= 200) trips to the machine during its construction. He has a secret tunnel that he uses only for the return trips. The farm comprises N (2 <= N <= 200) landmarks (numbered 1..N) connected by P (1 <= P <= 40,000) bidirectional trails (numbered 1..P) and with a positive length that does not exceed 1,000,000. Multiple trails might join a pair of landmarks. To minimize his chances of detection, FJ knows he cannot use any trail on the farm more than once and that he should try to use the shortest trails. Help FJ get from the barn (landmark 1) to the secret milking machine (landmark N) a total of T times. Find the minimum possible length of the longest single trail that he will have to use, subject to the constraint that he use no trail more than once. (Note well: The goal is to minimize the length of the longest trail, not the sum of the trail lengths.) It is guaranteed that FJ can make all T trips without reusing a trail.
输入
* Line 1: Three space-separated integers: N, P, and T * Lines 2..P+1: Line i+1 contains three space-separated integers, A_i, B_i, and L_i, indicating that a trail connects landmark A_i to landmark B_i with length L_i.
输出
* Line 1: A single integer that is the minimum possible length of the longest segment of Farmer John's route.
样例输入
7 9 2
1 2 2
2 3 5
3 7 5
1 4 1
4 3 1
4 5 7
5 7 1
1 6 3
6 7 3
样例输出
5
题解
二分+网络流最大流
显然最大长度满足二分性质,我们可以二分长度mid,这样只能选择长度小于等于mid的边来走。
然后由于题目限制了每条边只能走一次,要求1到n的路径数,显然这是一个最大流问题。
对于原图中的边x->y,长度为z,如果z<=mid,则连边x->y,容量为1;否则不连边。
然后跑最大流,判断是否大于等于T即可,并对应调整上下界。
说实话这道网络流真是再水不过了。
#include <cstdio>
#include <cstring>
#include <queue>
#define N 210
#define M 40010
using namespace std;
queue<int> q;
int n , m , p , x[M] , y[M] , z[M] , head[N] , to[M << 2] , val[M << 2] , next[M << 2] , cnt , s , t , dis[N];
void add(int x , int y , int z)
{
to[++cnt] = y , val[cnt] = z , next[cnt] = head[x] , head[x] = cnt;
to[++cnt] = x , val[cnt] = 0 , next[cnt] = head[y] , head[y] = cnt;
}
bool bfs()
{
int x , i;
memset(dis , 0 , sizeof(dis));
while(!q.empty()) q.pop();
dis[s] = 1 , q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
bool judge(int mid)
{
int i , ans = 0;
memset(head , 0 , sizeof(head)) , cnt = 1;
for(i = 1 ; i <= m ; i ++ )
if(z[i] <= mid)
add(x[i] , y[i] , 1) , add(y[i] , x[i] , 1);
while(bfs()) ans += dinic(s , 0x7fffffff);
return ans >= p;
}
int main()
{
int i , l = 0 , r = 0 , mid , ans = -1;
scanf("%d%d%d" , &n , &m , &p) , s = 1 , t = n;
for(i = 1 ; i <= m ; i ++ ) scanf("%d%d%d" , &x[i] , &y[i] , &z[i]) , r = max(r , z[i]);
while(l <= r)
{
mid = (l + r) >> 1;
if(judge(mid)) ans = mid , r = mid - 1;
else l = mid + 1;
}
printf("%d\n" , ans);
return 0;
}
【bzoj1733】[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 二分+网络流最大流的更多相关文章
- [bzoj1733][Usaco2005 feb]Secret Milking Machine 神秘的挤奶机_网络流
[Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 题目大意:约翰正在制造一台新型的挤奶机,但他不希望别人知道.他希望尽可能久地隐藏这个秘密.他把挤奶机藏在他的农 ...
- BZOJ1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机
n<=200个点m<=40000条边无向图,求 t次走不经过同条边的路径从1到n的经过的边的最大值 的最小值. 最大值最小--二分,t次不重边路径--边权1的最大流. #inclu ...
- BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机 网络流 + 二分答案
Description Farmer John is constructing a new milking machine and wishes to keep it secret as long a ...
- BZOJ 1733: [Usaco2005 feb]Secret Milking Machine 神秘的挤奶机
Description 约翰正在制造一台新型的挤奶机,但他不希望别人知道.他希望尽可能久地隐藏这个秘密.他把挤奶机藏在他的农场里,使它不被发现.在挤奶机制造的过程中,他需要去挤奶机所在的地方T(1≤T ...
- [BZOJ 1733] [Usaco2005 feb] Secret Milking Machine 【二分 + 最大流】
题目链接:BZOJ - 1733 题目分析 直接二分这个最大边的边权,然后用最大流判断是否可以有 T 的流量. 代码 #include <iostream> #include <cs ...
- 【bzoj1738】[Usaco2005 mar]Ombrophobic Bovines 发抖的牛 Floyd+二分+网络流最大流
题目描述 FJ's cows really hate getting wet so much that the mere thought of getting caught in the rain m ...
- POJ 2455 Secret Milking Machine(搜索-二分,网络流-最大流)
Secret Milking Machine Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 9658 Accepted: ...
- POJ2455 Secret Milking Machine
Secret Milking Machine Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 12324 Accepted ...
- POJ 2455 Secret Milking Machine(最大流+二分)
Description Farmer John is constructing a new milking machine and wishes to keep it secret as long a ...
随机推荐
- 2018.4.10 Ubuntu cat命令解答、用法
cat命令是linux下的一个文本输出命令,通常是用于观看某个文件的内容的: cat主要有三大功能: 1.一次显示整个文件. $ cat filename 2.从键盘创建一个文件. $ cat > ...
- 一步一步教你用IntelliJ IDEA 搭建SSM框架(1)
1.基本概念 SSM框架指:Spring MVC + Spring + MyBatis Spring MVC是一种web层mvc框架,用于替代servlet,处理|响应请求,获取表单参数,表单校验等 ...
- NSURL初始化失败
服务端给返回的网页加载不出来,仔细一看,url是空的!!为什么呢. 示例: NSString *urlStr = @"http://服务器返回带有汉字的url字符串.com"; N ...
- Codeforces Round #513 (rated, Div. 1 + Div. 2)
前记 眼看他起高楼:眼看他宴宾客:眼看他楼坍了. 比赛历程 开考前一分钟还在慌里慌张地订正上午考试题目. “诶这个数位dp哪里见了鬼了???”瞥了眼时间,无奈而迅速地关去所有其他窗口,临时打了一个缺省 ...
- 在VMware上安装centos7
1. 下载centos7 64位镜像 linux官网下载:https://www.centos.org/download/ 2. 在VMware上安装centos7 2.1 新建虚拟机 打开虚拟机主页 ...
- python3 兔子繁殖问题
题目 有一对兔子,从出生后第3个月起每个月都生一对兔子,小兔子长到第三个月后每个月又生一对兔子,假如兔子都不死,问每个月的兔子总数为多少? 代码: month = int(input("繁殖 ...
- SpringMVC总结以及在面试中的一些问题.
1.简单的谈一下SpringMVC的工作流程? 流程 1.用户发送请求至前端控制器DispatcherServlet 2.DispatcherServlet收到请求调用HandlerMapping处理 ...
- HDU 4738 双连通分量 Caocao's Bridges
求权值最小的桥,考虑几种特殊情况: 图本身不连通,那么就不用派人去了 图的边双连通分量只有一个,答案是-1 桥的最小权值是0,但是也要派一个人过去 #include <iostream> ...
- 用HashMap优化斐波那契数列 java算法
斐波那契是第一项为0,第二项为1,以后每一项是前面两项的和的数列. 源码:Fibonacci.java public class Fibonacci{ private static int times ...
- loj2030 「SDOI2016」储能表
ref ref 一个点就是一个数对 \((x,y)\). 记状态 \(f[i][1/0][1/0][1/0]\) 和 \(g[i][1/0][1/0][1/0]\),其中三个 \(1/0\) 取值分别 ...