题目大意:
  给定$n(n\leq10^{11})$,求$\displaystyle\sum_{i=1}^n[\tau(i)=4]$。

思路:
  设$p,q$为不相等的质数,则满足$\tau(i)=4$的数$i$一定可以表示成$pq$或$p^3$。
  对于$i=pq$的情况,可以先线性筛预处理出$\sqrt n$以内的质数,然后用LOJ6235的方法,用洲阁筛求出DP数组$f$。加上$last[j]-1$就是当$p_i^2>j$时不用$-1$转移,也就是加上了$p_i^2>j$的质数个数。此时$f[cnt+1-p_i]$表示的就是$\pi(n/p_i)-\pi(\sqrt n)$。统计答案时,枚举素数$p_i$,求$\sum_{p_i\leq\sqrt n}(\pi(n/p_i)-\pi(p_i))$即可。
  对于$i=p^3$的情况,直接在筛出来的质数中二分答案即可。
  时间复杂度$O\left(\frac{n^{\frac34}}{\ln n}\right)$。

细节:
  $n=1$时二分会挂掉,需要特判。

 #include<cmath>
#include<cstdio>
#include<cctype>
#include<algorithm>
#include<functional>
typedef long long int64;
inline int64 getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int64 x=ch^'';
while(isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
const int LIM=,P=;
bool vis[LIM];
int lim,p[P],sum[LIM],last[LIM*],cnt;
int64 n,val[LIM*],f[LIM*];
inline void sieve() {
for(register int i=;i<=lim;i++) {
if(!vis[i]) p[++p[]]=i;
sum[i]=sum[i-]+!vis[i];
for(register int j=;j<=p[]&&i*p[j]<=lim;j++) {
vis[i*p[j]]=true;
if(i%p[j]==) break;
}
}
}
int main() {
lim=sqrt(n=getint());
sieve();
for(register int64 i=;i<=n;i=n/(n/i)+) {
val[++cnt]=n/i;
}
std::reverse(&val[],&val[cnt]+);
std::copy(&val[],&val[cnt+],&f[]);
for(register int i=;i<=p[];i++) {
for(register int j=cnt;j;j--) {
const int64 k=val[j]/p[i],pos=k<=lim?k:cnt+-n/k;
if(k<p[i]) break;
f[j]-=f[pos]+last[pos]-i+;
last[j]=i;
}
}
int64 ans=;
for(register int i=;i<=cnt;i++) {
f[i]+=last[i]-;
}
for(register int i=;i<=p[];i++) {
ans+=f[cnt+-p[i]]-i;
}
if(n!=) ans+=std::upper_bound(&p[],&p[p[]]+,floor(pow(n,./)))-&p[];
printf("%lld\n",ans);
return ;
}

[CF665F]Four Divisors的更多相关文章

  1. codeforces 27E Number With The Given Amount Of Divisors

    E. Number With The Given Amount Of Divisors time limit per test 2 seconds memory limit per test 256 ...

  2. HDU - The number of divisors(约数) about Humble Numbers

    Description A number whose only prime factors are 2,3,5 or 7 is called a humble number. The sequence ...

  3. Divisors

    计算小于n的数中,约数个数最多的数,若有多个最输出最小的一个数. http://hihocoder.com/problemset/problem/1187 对于100有 60 = 2 * 2 * 3 ...

  4. Xenia and Divisors

    Xenia and Divisors time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  5. hihocoder1187 Divisors

    传送门 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 Given an integer n, for all integers not larger than n, f ...

  6. The number of divisors(约数) about Humble Numbers[HDU1492]

    The number of divisors(约数) about Humble Numbers Time Limit: 2000/1000 MS (Java/Others)    Memory Lim ...

  7. Sum of divisors

    Problem Description mmm is learning division, she's so proud of herself that she can figure out the ...

  8. Codeforces Beta Round #85 (Div. 1 Only) B. Petya and Divisors 暴力

    B. Petya and Divisors Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.com/contest/111 ...

  9. UVa 294 (因数的个数) Divisors

    题意: 求区间[L, U]的正因数的个数. 分析: 有这样一条公式,将n分解为,则n的正因数的个数为 事先打好素数表,按照上面的公式统计出最大值即可. #include <cstdio> ...

随机推荐

  1. U10783 名字被和谐了

    U10783 名字被和谐了 题目背景 众所周知,我们称g是a的约数,当且仅当g是正数且a mod g = 0. 众所周知,若g既是a的约数也是b的约数,我们称g是a.b的一个公约数. 众所周知,a.b ...

  2. MySQL之索引(四)

    压缩索引 MyISAM使用前缀压缩来减少索引的大小,从而让更多的索引可以放入内存中,这在某些情况下能极大地提高性能.默认只压缩字符串,但通过参数设置也可以对整数做压缩. MyISAM压缩每个索引块的方 ...

  3. easyui-numberbox限定仅输入数字

    许多必填项都涉及到数字,比如电话号码,身份证号这些要求用户在输入时只能输入数字.Easyui提供了数字框控件,允许用户只输入数字, <td> <input id="ssd& ...

  4. javascript 实现九九乘法表

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  5. ogre3D学习基础18 -- 材质的使用与脚本的简单书写

    这一节以基础16为基础,练习材质的使用. 第一,看看框架 //material #include "ExampleApplication.h" class TutorialAppl ...

  6. @SpringBootApplication的扫描范围

    在公共类自定义一个全局异常类,实现全局捕获异常,在另一个服务中调用的时候,发现没有生效 因此我添加了一个@ComponentScan("com.wuhen.jwt.common") ...

  7. 《HTTP协议详解》读书笔记---请求篇之响应状态码

    在接收和解释请求消息后,服务器返回一个http响应消息.它也分为3个部分:状态行.消息报头.响应正文,格式如下: HTTP-VersionStatus-CodeReason-PhraseCRLF(CR ...

  8. Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸

    Backpropagation Through Time (BPTT) 梯度消失与梯度爆炸 下面的图显示的是RNN的结果以及数据前向流动方向 假设有 \[ \begin{split} h_t & ...

  9. DFS和BFS遍历的问题

    来自https://github.com/soulmachine/leetcode 广度优先搜索 输入数据:没有什么特征,不像dfs需要有递归的性质.如果是树/图,概率更大. 状态转换图:数或者DAG ...

  10. nyoj 题目17 单调递增最长子序列

    单调递增最长子序列 时间限制:3000 ms  |  内存限制:65535 KB 难度:4   描述 求一个字符串的最长递增子序列的长度如:dabdbf最长递增子序列就是abdf,长度为4   输入 ...