传送门

搞不清楚为什么这一题要DP . . . . . .

思路:

  • \(n\le100\),考虑暴力。
  • 要求一大块区间内都是1,考虑前缀和。
  • 在矩阵中求一个符合条件的子矩阵,考虑\(n^3\)的“压行”做法。

具体实现:

  • 读入时,先记录每一层的前缀和,再把上一次的前缀和加进来。
  • \(n^2\)枚举正方形的上界和下界,顶着上界下界\(O(n)\)扫描记录答案。
  • 若当前的上界下界的距离\(\le ans\)跳过

直接上代码。用了宏定义和快读,但很好理解,初学者都能一眼就懂..

#include<iostream>
#include<cstring>
#include<queue>
#include<cstdlib>
#include<vector>
#include<set>
#include<map>
#include<cstdio>
#include<cmath>
#include<algorithm>
#include<bitset>
#include<ctime>
using namespace std; #define TMP template < class ins >
#define endl '\n'
#define RP(t,a,b) for(register int t=(a),edd=(b);t<=edd;t++)
#define ERP(t,a) for(register int t=head[(a)];t;t=e[t].nx)
#define DRP(t,a,b) for(register int t=(a),edd=(b);t>=edd;t--)
typedef long long ll; TMP inline ins qr(ins tag){
char c=getchar();
ins x=0;
int q=0;
while(c<48||c>57)
q=c==45?-1:q,c=getchar();
while(c>=48&&c<=57)
x=x*10+c-48,c=getchar();
return q==-1?-x:x;
}
const int maxn=105;
int data[maxn][maxn];
int sum[maxn][maxn];
int n,m;
int ans; inline void init(){
n=qr(1);
m=qr(1);
RP(t,1,n){
RP(i,1,m)
sum[t][i]=(data[t][i]=qr(1))+sum[t][i-1];
//记录当前行前缀和
RP(i,1,m)
sum[t][i]+=sum[t-1][i];
//把上一行前缀和加进来
}
return;
} inline bool jde(int x1,int y1,int x2,int y2){
int cmp=(abs(x1-x2)+1)*(abs(y1-y2)+1);
//计算面积
int sttd=sum[x2][y2]-sum[x2][y1-1]-sum[x1-1][y2]+sum[x1-1][y1-1];
//(x1-1,y1-1)到(1,1)的矩阵被减了两次,要补偿回来
return cmp==sttd;
} inline void eff(){
RP(t1,1,n){//枚举上界
RP(t2,t1,n){//枚举下界
int k=t2-t1+1;
//计算当前上下界对应的正方形大小
if(k<=ans)
continue;
//最优性剪枝
RP(t,k,m)//扫描一遍,
if(jde(t1,t-k+1,t2,t)){
ans=k;break;
//可以直接记录答案,因为前面已经最优性剪枝了
}
}
}
cout<<ans<<endl;
} int main(){
#define debugged
#ifdef debug
freopen("in.in","r",stdin);
freopen("out.out","w",stdout);
#endif
init();
eff();
return 0;
}

题解 P1387 【最大正方形】的更多相关文章

  1. P1387 最大正方形&&P1736 创意吃鱼法

    P1387 最大正方形 P1736 创意吃鱼法 两道类似的$DP$ 转移方程基本上类似于$f[i][j]=min(f[i-1][j-1],min(f[i][j-1],f[i-1][j]))$ 考虑构成 ...

  2. 洛谷 p1387最大正方形

    洛谷 p1387最大正方形 题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入格式 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来 ...

  3. 洛谷P1387 最大正方形

    题目描述 题目链接:https://www.luogu.org/problemnew/show/P1387 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输 ...

  4. P1387 最大正方形

    2018-08-16 https://www.luogu.org/problemnew/show/P1387 题意: 略. 4 4 0 0 1 1      把这个翻译成dp的形式   0 0 1 1 ...

  5. 洛谷 P1387 最大正方形 【dp】(经典)

    题目链接:https://www.luogu.org/problemnew/show/P1387 题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入格式: 输入 ...

  6. P1387 最大正方形 && P1736 创意吃鱼法(DP)

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...

  7. 洛谷 P1387 最大正方形 Label:奇怪的解法

    题目描述 在一个n*m的只包含0和1的矩阵里找出一个不包含0的最大正方形,输出边长. 输入输出格式 输入格式: 输入文件第一行为两个整数n,m(1<=n,m<=100),接下来n行,每行m ...

  8. 洛谷 [P1387] 最大正方形

    本题非常有趣. (n^6) 枚举四个端点,每次遍历矩阵求解. (n^4) 先处理前缀和,枚举四个端点,每次比较前缀和和正方形面积. (n^3) 枚举左上方端点,在枚举边长,前缀和优化 (n^2logn ...

  9. P1387 最大正方形 dp

    思路:  i j的最大正方形等于min(他的斜上方的的最大正方形,他的上方有的连续1,他的左方有的连续1)+1 #include<bits/stdc++.h> using namespac ...

随机推荐

  1. Android Gradle 经验总结

    用过android studio的对gradle应该都不陌生了,gradle文件的基本配置大同小异,略做了解使用应该是没什么问题了.但是深入细致的了解一下对于理解项目还是很有帮助的,尤其是遇到一些配置 ...

  2. HDU1969

    记得用PI=acos(-1)反三角函数求,用一次排序,然后二分和贪心 #include<iostream> #include<algorithm> #include<io ...

  3. 浅谈XXE攻击

    一.XXE,即XML External Entity,XML外部实体.ENTITY 实体,在一个甚至多个XML文档中频繁使用某一条数据,我们可以预先定义一个这条数据的“别名”,即一个ENTITY,然后 ...

  4. Xshell 初次应用

    以前就想安装Xshell,今天终于弄好了,可以在windows下对Linux服务端进行管理. 关于SSH和Xshell的介绍见参考,Linux上安装的是ssh服务端,所以咱们如果希望通过远程访问的方式 ...

  5. yii2操作数据库 mysql 读写分离 主从复制

    转载地址:http://www.kuitao8.com/20150115/3471.shtml 开始使用数据库首先需要配置数据库连接组件,通过添加 db 组件到应用配置实现("基础的&quo ...

  6. 数据结构基础-Hash Table详解(转)

    理解Hash 哈希表(hash table)是从一个集合A到另一个集合B的映射(mapping). 映射是一种对应关系,而且集合A的某个元素只能对应集合B中的一个元素.但反过来,集合B中的一个元素可能 ...

  7. 【Excle数据透视】如何在数据透视表字段列表中显示更多的字段

    创建完数据透视表之后,由于字段太多,在列表中没有完全显示 解决方案 通过"字段节和区域节并排"功能来显示更多字段 修改后结果 字段已经完全显示出来了! "字段节和区域节层 ...

  8. jquery:选择器 过滤器

    容易理解错误的地方: 1.假如我们想要让一个表格中第八列的所有单元格,都隐藏起来.我们可能会这么写$("table tr td:eq(8)").css("display& ...

  9. 我的IT之路

    在写这篇文章的时候内心是无比激动,因为这辈子是注定和IT打交道了. 都说大学时光是美好的,但却只有到了大四才知道时间是短暂的,也许和许多人一样,我的大学主要时光是在游戏中度过,1000多把的寒冰算是同 ...

  10. [原创] 浅谈开源项目Android-Universal-Image-Loader(Part 3.1)

    最近,总算有时间去做些平时喜欢而没空去做的事情.一直觉得项目中使用的Image Loader适用性不强,昨晚在github随便逛逛,发现一个开源项目Android-Universal-Image-Lo ...